ABSTRACT

Lignocellulosic biomass, including agricultural and forestry residues and herbaceous and woody crops [1], provides the only sustainable resource with potential for large-scale and low-cost production of liquid fuels and organic chemicals that are currently produced from dwindling and nonrenewable fossil resources that are major contributors to greenhouse gas emissions [1,2]. Enzymatic hydrolysis is a key step in the biological conversion of lignocellulosic biomass into fuels and chemicals, with the high product yields important to commercial success [1-5]. Endoglucanases,

exoglucanases, and β-glucosidase as well as supplementary enzymes such as xylanases and β-xylosidase are generally required to complete enzymatic hydrolysis effectively and efficiently [6-10]. However, to realize the high yields vital to commercial success of enzymatic conversion [11], most cellulosic biomass must be pretreated prior to enzymatic hydrolysis, and the choice of pretreatment not only affects enzymatic digestion performance but impacts upstream and downstream processing as well [1,12]. To overcome the natural recalcitrance of cellulosic biomass, several biological, chemical, thermochemical, and physical pretreatment methods have been applied, but thermochemical pretreatments are often preferred due to a more favorable combination of capital costs, operating costs, and performance [12].