ABSTRACT

Black tea is, second only to water, the most consumed beverage globally with an average per capita consumption of around 550 ml per day. The annual production of tea leaves reached a record high in 2008 with a global harvest of 3.75. Mt [1]. Production of dried tea comprises 20% green, 2% oolong and the remainder black. Following black tea, coffee is the third most consumed beverage globally with an annual production of 9.7 Mt and a daily consumption of around 300 ml (data from https://www. fas.usda.gov/, obtained 1st March 2011). Strong epidemiological evidence has repeatedly linked the consumption both black tea [2] and coffee [3,4] to a variety of beneficial health effects, among them is the prevention of multifactorial diseases including cancer, cardiovascular disease and neurological disorders as well as a series of psychoactive responses improving

alertness, mood and general mental performance [5-8]. Recently, Unilever made an application for a health claim, in which the black tea beverage should supposedly improve mental alertness and focus, based on studies by Nurk et al. with the activities of the two compounds caffeine and L-theanine as the proposed rationale [9]. While epidemiological studies link two causally unrelated events, e. g. a beneficial health effect with the consumption of a certain diet, with a certain statistical probability, the molecular causes of these epidemiological observations are rarely known. In order to rationalize epidemiological observations, a biological target must be identified that is mechanistically linked to the beneficial health effect reported, as well as the specific molecules contained in the diet that interact with the biological target in question at dietary and physiologically relevant concentrations. The search for such matching pairs of biological targets and dietary compound must be considered an exercise of fishing in the dark, however, where enzymes known to be intimately involved in the area in question need to be systematically screened against secondary metabolites known to be produced by the dietary plant in question.