ABSTRACT

Efficient bioconversion of lignocellulosic substrates depends critically on the functioning of multispecies microbial consortia rather than single strains [1]. In such consortia, secretion of the enzymes involved in biodegradation, as affected by the interactions between the microbial players (bacteria-fungi), is of crucial importance [2,3]. Wheat straw, as the source of lignocellulose, can potentially serve to provide building blocks for production of plastics or energy in biofuels [4]. The conversion of lignocellulosic polymers into monomers that can be further processed involves the synergistic action of a range of secreted enzymes, that is, peroxidases, xylanases and endo/exoglucanases [5,6]. In spite of the fact that intricate

knowledge on the decomposition process is lacking, many bacteria are known to be capable of producing such enzymes. In particular, members of the Gammaproteobacteria, Firmicutes and Bacteroidetes have been implicated in lignocellulose biodegradation [7,8]. Moreover, fungi like Trichosporon and Coniochaeta are considered as potential sources of hydrolytic enzymes, in particular those involved in the bioconversion of (toxic) furanic compounds and in the production of unique secondary metabolites [9,10]. In addition, recent evidence suggests that, from the biotechnological perspective, Penicillium, Acremonium and Trichoderma species represent fungi that are applicable in the production of commercial lignocellulases [11].