ABSTRACT

With global energy demands rising rapidly, new technologies need to be developed that utilize new resources for transportation fuels. Lignocellulosic biomass is one promising resource, where an estimated one billion tons will be available annually by 2030 in the US alone [1]. Lignocellulosic biomass is primarily composed of plant cell-wall polysaccharides, such as cellulose and hemicelluloses, which together constitute 60 to 70% of the biomass by weight for potential energy crops such as switchgrass [2]. These polymers are composed of hexose and pentose sugars that can

be fermented into substitutes for gasoline, diesel and jet fuel [3-7], augmenting or partially displacing current petroleum-based sources of liquid transportation fuels. One of the challenges of using lignocellulosic biomass for production of biofuels is the recalcitrance of plant biomass to deconstruction, a property that necessitates some form of chemical or physical pretreatment to permit enzymes or chemicals to gain access to and hydrolyze the plant polymers into fermentable sugars [4,6,8]. This study focuses on this challenge and discloses the discovery and characterization of biomass-deconstructing enzymes that are more compatible with certain forms of biomass pretreatment solvents than the current commercially available enzyme cocktails.