ABSTRACT

As the global demand for energy grows, the need for a sustainable fuel supply as a supplement or replacement for fossil fuels is becoming imperative [1]. Among possible technology options, the biochemical conversion of plant-derived sugars to biofuels has the potential to displace a substantial fraction of gasoline. This biochemical route involves the enzymatic hydrolysis of plant-derived polysaccharides to monomeric sugars, followed by fermentation of these sugars to biofuels such as ethanol. Starch from corn grain has been a major source of sugars for ethanol production in the U.S., but significant future growth of the corn ethanol industry is limited by the growing demand for both food and animal feed, as well as the recent

achievement of maximum production limits on starch-based ethanol set by the Renewable Fuel Standard in the Energy Independence and Security Act of 2007 [2]. Thus, cellulosic biomass (i.e. plant cell wall material) is envisioned as an important feedstock for producing biofuel sustainably in the future as well as meeting renewable transportation fuel mandates.