ABSTRACT

Ultrasound (US) has undergone impressive technical developments since the earliest static scanners with the progressive introduction of gray scale (1970), real time (1975), multi-element arrays (1975), pulsed Doppler (1970), color Doppler (1985), and the conversion to digital systems (1985); all of which have extended its reliability and ease of use so that now almost 25% of all clinical imaging studies worldwide are US examinations (1). The last five years have seen an emphasis on ease of use, with control panel ergonomics greatly improved and the development of systems to improve imaging such as automatic time gain compensation (TGC) and Doppler settings, which not only speed examinations but also improve reproducibility. Radical innovations of particular importance in oncology are the development of safe and effective contrast agents for US in the form of microbubbles, the development of elasticity imaging (elastography), and the use of US in therapy, both as a means of heat-coagulating tissue (high intensity focused ultrasound, HIFU) and as a way to improve drug delivery, either on its own or in combination with microbubbles.