ABSTRACT

Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.2.1 Empirical Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.1.1 ZigBee in the Presence of a WLAN Interferer . 187 7.2.1.2 ZigBee in the Presence of a Microwave Oven

Interferer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.2.1.3 ZigBee in the Presence of both WLAN and

Microwave Oven Interferers . . . . . . . . . . . . . . . . . 190 7.2.2 Mathematical Modeling and Simulation . . . . . . . . . . . . . . . . . . . . 191

7.2.2.1 ZigBee in the Presence of Bluetooth

Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.2.2.2 ZigBee in the Presence of WLAN Interference 198

7.3 Interference Avoidance/Mitigation Algorithms . . . . . . . . . . . . . . . . . . . . . . 200 7.3.1 Self-Interference Avoidance Algorithms . . . . . . . . . . . . . . . . . . . . 200

Self-Interference

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 7.3.1.2 Adaptive Interference-Aware Multi-Channel

Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.1.3 Adaptive and Dynamic Interference Avoidance

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.2 Network-aided Interference Mitigation Algorithms . . . . . . . . . 208

7.3.2.1 Portable Device Aided Coexistence Algorithm 210

7.3.2.2 Network-Centric Inter-System Interference

Mediation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 216 7.4 Discussion on Cognitive Radio as an Interference Mitigation

Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.4.1 Cognitive Radio for Interference Mitigation: RawPEACH

Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

As a ubiquitous communication era is emerging, various types of communication

protocols are expected to support diverse services with different requirements. In

particular, wireless local area networks (WLANs) like WiFi and wireless personal

area networks (WPANs) such as Bluetooth and ZigBee networks may coexist in the

same frequency band. However, since there is no central interference coordinator,

they may interfere with each other. Especially, since ZigBee devices have relatively

lower power emission, compared with other network protocol devices, they may suf-

fer from severe interference, resulting in significant performance degradation. There-

fore, we need to solve underlying coexistence problems between ZigBee and other

networks. This chapter consists of two main parts. In the first part, the performance

analysis of ZigBee networks is described in the presence of interference from het-

erogeneous communication systems. The performance of ZigBee networks is inves-

tigated based on both measurements in a real testbed environment and mathematical

analysis using a Markov chain concept. In the second part, two types of interference

avoidance/mitigation algorithms are introduced in order to enhance the performance

of ZigBee networks in overlaid networks environments. A cognitive radio concept as

interference mitigation technology is also discussed.