ABSTRACT

ABSTRACT: Topology optimization methods using discrete elements such as frame elements can provide useful insights into the underlying mechanics principles of products, however the majority of such optimizations are performed under deterministic conditions. In order to consider variations of design parameters during the optimization, part of the authors presented a reliability-based topology optimization method for frame structures that considers uncertainties in applied loads and nonstructural mass at the early conceptual design stage. System reliability for multiple criteria, namely stiffness and eigen-frequency, is evaluated by regarding them as a series system, where mode reliabilities can be evaluated using first order reliability methods. In this study, the reliability-based optimization is expanded to consider variations on cross-sectional property of frame element on the optimum topology. Through numerical calculations, reliability-based topology designs of typical three-dimensional frames are obtained. The effect of uncertainties of cross-sectional property of frame element is investigated on the optimum topology.