ABSTRACT

This research considers the effect of the detonation of a 213 kg mass of explosive in a subgrade at depths of8.354 m, 9.354 m, 10.354 m, 11.354 m, 12.354 m, 15.354 m and 18.354 m beneath a cement concrete runway. The detonation produces a void in the subgrade and disturbs the subgrade beneath the runway. Seventeen computational models of the void and the disturbed subgrade [camouflet] are considered ranging from where all the detonation-affected subgrade zones are increased in strength to where all the detonation-affected subgrade zones are reduced in strength. Consideration is given to the possibility of using the diameter of the runway deflection bowl as a means of determining the size, depth and position of the void. The results from the computational models are compared with empirical data that states that for the void to have no effect at the air-ground interface, the depth of detonation must exceed a specified value. From this comparison it is found possible to determine the material sets that can be generated feasibly from the detonation. It is also found that for some material sets it is possible to identify the size, depth and location of the void.