ABSTRACT

When metal or oxide nano particles are dispersed in liquids to form nanofluids, the particles improve thermal conductivity of the liquids. Therefore, it is suggested to use nanofluids as coolants to improve heat-exchanger efficiency. However, the nano particles also cause the increase of fluid viscosity. The present paper has numerically studied the flow and heat transfer of the nanofluids in a 2-D microchannel by using Computational Fluid Dynamics method. It is found that although the nano particles enhance the heat transfer rate of the fluids about certain percentage, the nano particles also cause an increase of viscous shear stress, and further causes an increase of the power consumption to deliver the nanofluids through the microchannels.