ABSTRACT

With the advent of third generation synchrotrons, new techniques became feasible such as lensless x-ray microscopy and x-ray photon correlation spectroscopy (XPCS) based on the coherent properties of the x-ray beam. In recent years, the development of these scienti c areas have gained tremendous momentum due to the prospect of upcoming x-ray free-electron lasers (XFEL’s) which will provide transversely coherent, intense x-ray pulses on femtosecond timescale. e investigation of ultrafast processes has so far been the domain of optical techniques. Because of the larger wavelength, however, the details of the underlying processes remain unresolved. With the development of new accelerator-based sources, coherent x-rays will provide the spatial resolution to follow ultrafast phenomena on the relevant timescales of atomic motions. Scientists dream of taking snapshots or movies of transient phenomena in materials like ultrafast phase transitions, melting and nucleation e ects, nonlinear interaction of x-rays with matter, etc. X-ray holography is one of the key x-ray microscopy techniques for high-resolution imaging which is compatible with full- eld single-shot imaging in coherent beams and is the focus of this chapter.