ABSTRACT

Nanoscience promises innovative solutions in a large variety of sectors, ranging from cost-e ective optoelectronic devices to energy generation to highly performing materials and interfaces. One of the most studied building blocks of nanoscience are colloidal inorganic nanocrystals, since their properties and interparticle interactions can be controlled on a high level by tailoring their size, composition, and surface functionalization. Indeed, semiconductor, metal, and magnetic nanocrystals have been already applied in biological and biomedical research (i.e., uorescent of magnetic tagging, hyperthermia, and biosensing), electro-optical devices such as light-emitting diodes and lasers, photovoltaic cells, catalysis and gas sensing. is trend has been possible via breakthrough advances in the wet-chemical syntheses and assembly of robust and easily processable nanocrystals of a wide range of materials, sizes, and shapes. Also, the design of architectures of such nanocrystals constructed by self-assembly has been investigated, as assemblies represent new materials on which chemical and physical interactions among nanocrystals can be investigated.