ABSTRACT

Crater-Formation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.3 Phenomenological Theory of Crater Formation Based

on Thermal Explosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Shock-Wave-Driven Damage and Spallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 E-Field Intensity Enhancement by Localized Defects and Related Mechanisms of Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Probability of Damage Initiated by an Ensemble of Distributed Localized Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Introduction Ever since the appearance of a laser as a tool that permits extreme spatial and temporal concentration of light energy, it has been realized that localized absorbing defects in optical components are a major source of laser-induced damage. ere is ongoing continuous eort to reduce the number and size of absorbers in optical materials used for laser applications. Still, with ever-increasing laser power densities (for instance, in laser fusion facilities), even nanoscale absorbing defects continue to be a major source of damage.