ABSTRACT

Department of Aerospace Engineering, University of Illinois at UrbanaChampaign

Gengbin Zheng

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9.1.1 ParFUM Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 9.1.2 Implementation of the ParFUM Framework . . . . . . . . . . . . 190

9.2 Load Balancing Finite Element Codes in Charm++ . . . . . . . . . . . . 193 9.2.1 Runtime Support for Thread Migration . . . . . . . . . . . . . . . . . 193 9.2.2 Comparison to Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 9.2.3 Automatic Load Balancing for FEM . . . . . . . . . . . . . . . . . . . . 195 9.2.4 Load Balancing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 9.2.5 Agile Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.3 Cohesive and Elasto-plastic Finite Element Model of Fracture . 199 9.3.1 Case Study 1: Elasto-Plastic Wave Propagation . . . . . . . . 202 9.3.2 Case Study 2: Dynamic Fracture . . . . . . . . . . . . . . . . . . . . . . . . 206

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Researchers in the field of structural mechanics often turn to the parallel finite element method to model physical phenomena with finer detail, sophistication and accuracy. While parallel computing can provide large amounts of computational power, developing parallel software requires substantial effort to exploit this power efficiently.