ABSTRACT

Boron nitride nanotube (BNNT) is a potential reinforcement for structural composites owing to its (1) excellent elastic modulus (750-1200 GPa; Chopra and Zetll 1998, Suryavanshi 2004), (2) tensile strength (up to 61 GPa; Arenal 2011), (3) high bending exibility (Golberg 2007), (4) high fracture strain (Ghassemi 2011), and (5) high-temperature inertness (oxidation starts >950°C; Golberg 2001, 2007). While discussing BNNT as reinforcement to structural composites, an obvious comparison with carbon nanotubes (CNTs) is made. is is because these two types of

18.1 Introduction 495 18.2 Polymer-BNNT Composites 498

18.2.1 Synthesis of PLC-BNNT Composite 498 18.2.2 Tensile Properties and Strengthening Mechanism of PLC-BNNT Composite 501 18.2.3 Biocompatibility of PLC-BNNT Composite for Orthopedic Application 501

18.3 Ceramic-BNNT Composites 503 18.3.1 Synthesis of HA-BNNT Composite 503 18.3.2 HA-BNNT Interface 505 18.3.3 Fracture Toughening of HA-BNNT 505 18.3.4 Tribological Behavior of HA-BNNT 506 18.3.5 Biocompatibility of HA-BNNT Composite 507

18.4 Metal-BNNT Composites 509 18.4.1 Interfacial Reaction for Aluminum-BNNT System 511 18.4.2 Synthesis of Aluminum-BNNT Composite 515 18.4.3 Strengthening in Aluminum-BNNT Composite 515 18.4.4 Formability of Al-BNNT Composite 516

18.5 Summary 519 References 519

nanotubes, BNNT and CNT, are not only structural analogues, but their elastic modulus and tensile strength are also similar. However, BNNTs show higher oxidation temperature as compared to CNT, which could be benecial for processing composites at higher temperature, especially the ceramic and metallic matrix ones, without damaging the reinforcement phase.