ABSTRACT

Till 1925 the idea of what the quantum theory would be was unknown. During 1925 three different but equivalent versions of quantum theory were proposed – Schrödinger-proposed wave mechanics; Heisenberg-developed matrix mechanics and Dirac-introduced operator theory. Considering the de Broglie’s matter waves Erwin Schrödinger, an Austrian physicist, argued that if a particle like an electron behaves as a wave then the equation of wave motion could be successfully applied to it. He postulated a function varying in both space and time in a wave-like manner (hence called wave function and denoted it as ψ). This function is generally complex and assumed to contain information about a system. Schrödinger set up a linear and time-dependent wave-like equation, called Schrödinger wave equation, to describe the wave aspect of a particle taking account of de Broglie’s relation for wavelength. Physically, |ψ(X, t)|2, where ψ(X, t) is the solution of the Schrödinger equation, is interpreted as position probability density. That is, |ψ(X, t)|2 is the probability density of observing a particle at position X at time t. ψ does not give exact outcomes of observations but helps us to know all possible events and their probabilities . Further, the probability interpretation allows us to find the average or expected result of a set of measurements on a quantum system.