chapter  2
- Schrödinger Equation and Wave Function
Pages 34

Till 1925 the idea of what the quantum theory would be was unknown. During 1925 three different but equivalent versions of quantum theory were proposed – Schrödinger-proposed wave mechanics; Heisenberg-developed matrix mechanics and Dirac-introduced operator theory. Considering the de Broglie’s matter waves Erwin Schrödinger, an Austrian physicist, argued that if a particle like an electron behaves as a wave then the equation of wave motion could be successfully applied to it. He postulated a function varying in both space and time in a wave-like manner (hence called wave function and denoted it as ψ). This function is generally complex and assumed to contain information about a system. Schrödinger set up a linear and time-dependent wave-like equation, called Schrödinger wave equation, to describe the wave aspect of a particle taking account of de Broglie’s relation for wavelength. Physically, |ψ(X, t)|2, where ψ(X, t) is the solution of the Schrödinger equation, is interpreted as position probability density. That is, |ψ(X, t)|2 is the probability density of observing a particle at position X at time t. ψ does not give exact outcomes of observations but helps us to know all possible events and their probabilities . Further, the probability interpretation allows us to find the average or expected result of a set of measurements on a quantum system.