ABSTRACT

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 A. Suprachemical Categories and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 B. Progress in the Science of Abiotic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 C. Progress in the Science of Abiotic Supramolecular Chemistry . . . . . . . . . . . . . . . . . . . 190 D. Structure-Controlled Macromolecules by Abiotic Synthesis . . . . . . . . . . . . . . . . . . . . . 192

II. The Dendritic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 A. A Comparison of Traditional Polymer Science with Dendritic

Macromolecular Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 B. Dendrimer Synthesis Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 C. A Comparison of Divergent Abiotic Synthesis with the Biotic Strategy . . . . . . . . . . . 197 D. Supramolecular Aspects of the Classical Divergent Dendrimer Synthesis . . . . . . . . . . 199

1. The “All or Nothing” Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 2. Sterically Induced Stoichiometry (SIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 3. Dendrimer Structure Ideality — A Signature for Self-Assembly and for

“de Gennes Dense Packing” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 E. Strategies for the Supramolecular Assembly of Components to Produce Dendrimers 205

1. Supramolecular Assembly of Dendrimers Based on Focal Point Functionalized Dendrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

2. Supramolecular Assembly of Dendrimers Based on the Assembly of Branch Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

III. Supramolecular and Supramacromolecular Chemistry of Dendrimers . . . . . . . . . . . . . . . . . 210 A. The Dualistic Role of Dendrimers as Either Endo-or Exo-Receptors . . . . . . . . . . . . . 210 B. Dendrimers as Unimolecular Nanoscale Cells or Container Molecules . . . . . . . . . . . . 210

1. Evolution of Abiotic Container Molecules — From Carcerands/Carceplexes to Dendrimers/Dendriplexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

2. Mimicry of Classical Regular Micelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 3. Mimicry of Classical Inverse Micelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C. Dendrimers as Nanoscale Amphiphiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 1. Dendritic Architectural and Compositional Copolymers . . . . . . . . . . . . . . . . . . . . . 215

CIFE: “dk3116_c007” — 2005/3/7 — 17:33 — page 188 — #2

D. Dendrimers as Nanoscale Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 1. Dendritic Rods and Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 2. Supramolecular Chemistry at the Dendrimer Surface . . . . . . . . . . . . . . . . . . . . . . . 226 3. Hyper-Valency/Hyper-Cooperativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

E. Dendrimers as Nanoscale Tectons (Modules) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 1. Two-Dimensional Dendritic Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 2. Three-Dimensional Dendritic Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

IV. Supramacromolecular Polymerization of Dendrimers into Precise Core-Shell Tecto(dendrimers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 A. Direct Covalent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 B. Self-Assembly with Sequential Covalent Bond Formation Method . . . . . . . . . . . . . . . 242

V. Overview — Present Applications — Dendritic Nanodevices . . . . . . . . . . . . . . . . . . . . . . . 243 A. Overview of the Dendritic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 B. Dendritic Nanodevices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

VI. The Future/Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

I. INTRODUCTION

In this simple quotation, Feynman has perhaps described nature’s ultimate example of a minimalist self-assembly. This is most certainly not a molecular level self-assembly; nonetheless atoms serve to remind us that self-organization of fundamental subatomic entities occurred to give us the most basic building blocks of the universe [2]. These self-assembling events were consummated some 10 to 13 billion years ago and marked a unique moment in time from which first order was forever derived from chaos. This was the genesis of the long, unrelenting evolutionary journey to more complex forms of natural matter.