ABSTRACT

I. DNA as a Closed SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 A. DNA Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 B. DNA Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 C. DNA Synthesis and Enzymology: Tools of the Trade . . . . . . . . . . . . . . . . . . . . . . . . . . 450

II. Linear, DNA-Based Supramolecular Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 A. SPs Based on Modified Oligonucleotides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 B. SPs Based on DNA-Polymer Conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

III. Two-and Three-Dimensional DNA SPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 IV. DNA Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 V. DNA-Based Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 VI. DNA-Based Nanofabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

As one of the four major macromolecules native to living cells, DNA plays a central role in gene storage and transfer. With advances in synthetic and biotechnology routes to its ex vivo production, however, DNA has found increasing use in unnatural settings. Among these recent uses are a host of applications in supramolecular polymer systems. It is somewhat fitting that DNA has become a molecule of choice for supramolecular materials and chemistry; the elegance of the DNA duplex design and the fidelity of molecular recognition within the double helix are an oft-cited inspiration for much of supramolecular chemistry. In the context of supramolecular polymerizations, DNA is interesting because it can be used and studied as a closed SP (supramolecular polymer) and also as an open SP of either a linear, a planar, or a three-dimensional variety. In this chapter, the fundamental molecular recognition properties of DNA and a picture of the scope of its utility will be presented. The recent explosion in the use of DNA-templated materials prohibits an exhaustive review of the field, but the overview of recent examples should provide a flavor for the possibilities available to the field.