ABSTRACT

The modern quantum theory of the valence [1] and the chemical bonds is entirely based on the application of one-electron functions. Meanwhile, by itself the idea of a bond which is built by a pair of electrons assumes such strong interaction between the electrons with opposite spins that any description of this interaction by means of two one-electron functions is somewhat artificial and cannot be exact. It is much more natural to associate with each saturated bond its own two-electron function and to preserve one-electron functions only for non-saturated bonds. (The electron functions are understood as the functions which depend only on spatial coordinates, but not on the spin.)

A possibility of such description will be proved if one finds a way to construct the wave function of all valence electrons from two-electron and one-electron functions which correspond to saturated and non-saturated bonds. The total wave function has to possess all the necessary symmetry properties and to represent a state of the molecule with a definite number of saturated and non-saturated bonds.