ABSTRACT

Sufficiently high power-intensiveness of the process of fracture is defined according to the postulate, that fracture opening in a stressed gas-filled seam is possible only by supplying pressure overcoming the force of mining stress and deforming process during fracture formation. In these conditions the use of the energy of the gas and mining stress forces contained in coal bed for coal destruction is of great interest and can provide conditions for the fractures staying open for the exposure of partial de-stressing of the coal bed. Technologically the process of initiation of self-supported coal destruction is realized by steadily pumping working liquid into the seam and then following with a sharp release of pressure. As a result destruction and coal and gas outburst from the seam occurs. Regime of power action and regime of coal dust output are repeated over and over again. The created extended slot-like space forms around itself in a coal bed a destressed zone of high jointing and gas permeability, where the fracture opening caused by de-stressing provides a sharp increase in gas permeability of coal and partly destructed coal because formation of new degassing spaces increases a rate of gas emission desorbed from the coal. It is necessary to accentuate, that the zone of low stresses develops with time.