ABSTRACT

Let X p $ X_p $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429488436/725f3a92-cccc-4b3b-961a-84021a8d495e/content/inline-math3_2.tif"/> be a sequence of p × n $ p \times n $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429488436/725f3a92-cccc-4b3b-961a-84021a8d495e/content/inline-math3_3.tif"/> patterned random matrices whose link function does not necessarily satisfy the symmetry condition L ( i , j ) = L ( j , i ) $ L(i, j)=L(j,i) $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429488436/725f3a92-cccc-4b3b-961a-84021a8d495e/content/inline-math3_4.tif"/> . The goal of this chapter is to enlarge the scope of our approach and study the LSD of matrices of the form A p ( X ) = 1 n X p X p ′ . $$ \begin{aligned} A_p(X) =\frac{1}{n}X_pX_p^\prime .\end{aligned} $$ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429488436/725f3a92-cccc-4b3b-961a-84021a8d495e/content/math3_1.tif"/>