ABSTRACT

For the moment, let us forget about critical phe-

nomena and the RG. We begin with the Gaussian probability

- K q distribution P « e with our old notation

o

K o ' Ï / dd* [ ( ,σ )2 + r o " ! ]

Σ ì k j 2 « · ^ 2 » ■ I9· 1» k, i

'λ Note that σ.. = σ. , since CT.(x) is rea l. Let a., and

ik ι -k l ik

ßik be, respectively, the real and the imaginary parts of

of wave vectors (k, -k) and for eve ry component i we have

an independent Gaussian probability distribution

- a 2. /G (k) - β 2 /G (k) ik o ik ο ^

e e (9 . 2 )

2 - 1 where G (k) = (r + k ) . The averages over the proba-

G IN Z B U R G -LANDAU M O D E L 281

< I σ., I2 > = G (k) , 1 ik 1 ο ο

<°-b. °-u/ > 3 δ , , , 6 .. G (k) . (9. 3)ik jk o -kk ij o

It is a good exerc ise to show, using (9.2), that

z m _ m v / , ,2 m v( σ σ > = < σ. , ) ik ι -k ο 1 ik 1 o

(2ml! G (k)m . (9 .4) m ! 2

The factor (2m )!/ (m ! 2m ) happens to be just the number

of ways of dividing up 2m objects into m pairs. More

generally we can figure out the average

A = < σ ΐ k σ ί k · · · ° i k ) (9-5) ' f l 2 2 h i / o

for any i^ , . . . , i , k ^ , . . . , k , by the following rule s :

(a) i f I is odd, A = 0, and

(b) i f i is even, A is the sum of products of pa ir -

w ise average, summing over ail possible ways of pairing

up the I a 's . Each pair gives a factor shown in the last

line of 49-3).