ABSTRACT

Abstract Microbial resistance to antimicrobial agents has evolved to alarming proportions. To avert potentially catastrophic consequences for public health, a concerted effort is necessary. It should include, among other elements, the development of methods that can optimize the clinical use of existing agents and accelerate the development of new ones. For both tasks, the design of effective dosing regimens that suppress the emergence and proliferation of resistant microbial populations is crucial. In this chapter, we provide a comprehensive presentation of our recent theoretical and experimental work on a mathematical modeling framework that can be used to optimize the design of such dosing regimens. Suggestions for future work are made.