ABSTRACT

This second edition comprehensively presents important tools of linear systems theory, including differential and difference equations, Laplace and Z transforms, and more.
Linear Systems Theory discusses:

  • Nonlinear and linear systems in the state space form and through the transfer function method
  • Stability, including marginal stability, asymptotical stability, global asymptotical stability, uniform stability, uniform exponential stability, and BIBO stability
  • Controllability
  • Observability
  • Canonical forms
  • System realizations and minimal realizations, including state space approach and transfer function realizations
  • System design
  • Kalman filters
  • Nonnegative systems
  • Adaptive control
  • Neural networks
    The book focuses mainly on applications in electrical engineering, but it provides examples for most branches of engineering, economics, and social sciences.
    What's New in the Second Edition?
  • Case studies drawn mainly from electrical and mechanical engineering applications, replacing many of the longer case studies
  • Expanded explanations of both linear and nonlinear systems as well as new problem sets at the end of each chapter
  • Illustrative examples in all the chapters
  • An introduction and analysis of new stability concepts
  • An expanded chapter on neural networks, analyzing advances that have occurred in that field since the first edition
    Although more mainstream than its predecessor, this revision maintains the rigorous mathematical approach of the first edition, providing fast, efficient development of the material.
    Linear Systems Theory enables its reader to develop his or her capabilities for modeling dynamic phenomena, examining their properties, and applying them to real-life situations.
  • chapter 1|56 pages

    Mathematical Background

    chapter 2|50 pages

    Mathematics of Dynamic Processes

    chapter 3|89 pages

    Characterization of Systems

    chapter 4|45 pages

    Stability Analysis

    chapter 5|49 pages

    Controllability

    chapter 6|34 pages

    Observability

    chapter 7|47 pages

    Canonical Forms

    chapter 8|50 pages

    Realization

    chapter 9|37 pages

    Estimation and Design

    chapter 10|36 pages

    Advanced Topics