ABSTRACT

Neural plasticity and repair are the subjects of intense scientific investigation. Many basic neuroscience studies are now devoted to the investigation of the mechanisms underlying the induction of long-term changes in brain structure and function under normal or pathologic conditions. There is great hope that these studies will, in turn, lead to new treatments for disease and injury. Most of the current research in neural plasticity and repair uses rodent models. These types of studies require the neuroscientist to be able to discern changes in brain function or structure as a result of interventions, which may be pathological or therapeutic. Such information can often only

be obtained by sacrifice of the animal and histological or biochemical observation of the brain or electrophysiological study of brain slices. Obviously, these approaches have their limitations. First, terminal studies preclude longitudinal evaluation of individual animals. Changes that may occur as a result of an intervention have to be inferred by examining groups of animals prior to and at different times following intervention. The groups then must be statistically compared to each other, requiring the use of large numbers of animals. Furthermore, this type of investigation underestimates the significance of variation between animals, potentially missing distinctions between groups of responders and nonresponders, for example. Ideally, one would like to have the ability to make repeated observations in individual animals in order to accurately assess interanimal variability and to allow for a direct analysis of change over time due to a given intervention.