ABSTRACT

Molecular imaging may be defined as the visual representation, characterization, and quantification of biological processes at the cellular and subcellular levels within intact living organisms. It is a novel multidisciplinary field, in which the images produced reflect cellular and molecular pathways and in vivo mechanisms of disease present within the context of physiologically authentic environments. The overall goals of molecular imaging within biomedical research are (i) to develop noninvasive in vivo imaging methods that reflect specific cellular and molecular processes, for example, gene expression, or more complex molecular interactions such as proteinprotein interactions; (ii) to monitor multiple molecular events near-simultaneously; (iii) to follow trafficking, differentiation, and targeting of cells; (iv) to optimize drug and gene therapies; (v) to image drug effects at a molecular and cellular levels; (vi) to assess disease progression at a molecular pathological level; (vii) to create the possibility of achieving all of the above goals of imaging in a rapid, reproducible, and quantitative manner, so as to be able to monitor time-dependent experimental, developmental, environmental, and therapeutic influences on gene products in the same animal or patient.