ABSTRACT

206In the last decade we have witnessed the dramatic increase of interest in grid computing as an innovative extension to distributed computing technology. This technology is achieving computing resource sharing among participants in a collection of virtual organizations. Grid computing is a computing model that provides the ability to perform higher throughput computing by taking advantage of many networked computers to model virtual computer architectures. This kind of architecture is able to distribute process execution across a parallel infrastructure.

This technology leverages a combination of hardware/software visualization, and the distributed sharing of those virtualized resources. These resources can include all elements of computing, including: hardware, software, applications, networking services, pervasive devices, and complex footprints of computing power. Grid computing is one technology enabler for some of the most innovative and powerful emerging industrial solution approaches. The emergence of open standards has a great influence on this computing technology, especially in providing seamless grid interoperability and grid integration facilities. With the exception of financial firms, grid computing has not made inroads into the business community. Private industry has expressed concerns about the security of grid computing and various psychological barriers have prohibited it from being incorporated even in business LAN environments.

This chapter gives a fairly comprehensive security overview of grid computing. The main purpose is for the reader to obtain knowledge of security in high-performance computing. In grid technology, security tools are concerned with establishing the identity of users or services (authentication), protecting communications, and determining who is allowed to perform what actions (authorization), as well as with supporting functions such as managing user credentials and maintaining group membership information. The primary motivations behind privacy for grid computing are the need for secure communication (authenticated and also confidential) between elements and also the need to support security across organizational boundaries. Among them, it also requested to prohibit a centrally managed security system. The need to support “single sign-on” for users of the grid is also a proven crucial factor as is the delegation of credentials for computations that involve multiple resources and/or sites.

In this chapter, security mechanisms such as Message-Level Security, Transport-Level Security, and Authorization Frameworks will be described. These mechanisms are proven critical, since they support a variety of authorization schemes. The terms of Public Key Cryptography, Digital Signatures, Certificates, and Mutual Authentication from the aspect of Grid Computing are also examined and presented in detail.