ABSTRACT

316Harnessing idle CPU cycles from PCs across a network (Internet or intranet) has proven to be an economically attractive solution for solving many problems. Research has shown that the average idle time for most PCs is over 90%, representing a virtually limitless source of untapped computing power. As such, distributed computing grids1 have become an increasingly popular form of grid computing in research communities as well as in industry.

Likewise, industry leaders such as Sun Microsystems offer CPU cycles as a commodity with their Sun Grid Compute Utility services. Known as utility computing, this type of environment attempts to commoditize computational power by allowing consumers to purchase CPU cycles on demand.

A natural evolution is to combine these two paradigms, i.e., providing harnessed idle cycles as a commodity or managed service, governed by Service Level Agreement (SLA) contracts. However, such an enterprise presents difficult challenges with regard to safety and security. The complexity of these challenges is greatest when the resource owner, consumer, and broker are three distinct parties. This may introduce a motivational paradox such that all parties want to maximize utilization via cooperative use of resources, and yet have conflicting interests as to how and when the resources are utilized. This chapter will focus on the presentation of safety and security challenges in this environment, as well as solutions to address these challenges.