ABSTRACT

Contents 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 11.2 Optical Generation of Millimeter-Wave Signals . . . . . . . . . . . . . . . . . . . 379

11.2.1 Mach-Zehnder Modulator-Based Techniques . . . . . . . . . . . . 381 11.2.2 Optical Locking Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

11.3 Optical Fiber Transmission of Millimeter-Wave Signals . . . . . . . . . . . 385 11.3.1 Millimeter-Wave Radio-over-Fiber Links . . . . . . . . . . . . . . . . . 386

11.3.1.1 Concepts, Advantages, and Applications of RoF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

11.3.1.2 Optical External Modulation for Millimeter-Wave RoF Links . . . . . . . . . . . . . . . . . . . . . 388

11.3.1.3 RF Properties of RoF Links . . . . . . . . . . . . . . . . . . . . . 389 11.3.1.4 The Design of RoF Links . . . . . . . . . . . . . . . . . . . . . . . 390

11.3.2 Effect of Fiber Dispersion and Nonlinearity . . . . . . . . . . . . . 391 11.3.2.1 Signal Fading Induced by CD . . . . . . . . . . . . . . . . . . 391 11.3.2.2 Effect of Fiber CD on Self-Heterodyne

Millimeter-Wave RoF Links . . . . . . . . . . . . . . . . . . . . . 393

11.3.2.3 Effect of PMD on Millimeter-Wave RoF Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

11.3.2.4 Effect of Fiber Nonlinearity . . . . . . . . . . . . . . . . . . . . 395 11.3.3 Optical Single-Sideband Modulation . . . . . . . . . . . . . . . . . . . . . 396

11.3.3.1 OSSB Modulation Using Dual-Electrode Mach-Zehnder Modulator . . . . . . . . . . . . . . . . . . . . . . 397

11.3.3.2 OSSB Modulation Incorporating EAMs . . . . . . . . 398 11.3.4 Millimeter-Wave RoF Transmission

Incorporating DWDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 11.3.4.1 Simultaneous Electro-Optical Up-Conversion . 399 11.3.4.2 Wavelength Interleaving in Millimeter-Wave

DWDM RoF Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 11.3.4.3 Topology for Millimeter-Wave DWDM RoF

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 11.3.4.4 Multiplexing, Demultiplexing,

and Optical Add/Drop Multiplexing for DWDM RoF Links . . . . . . . . . . . . . . . . . . . . . . . . . . 402

11.3.4.5 Unequally Spaced Channel Technology Minimizing Four-Wave Mixing Crosstalk in Millimeter-Wave DWDM RoF Links . . . . . . . . . . . . 405

11.3.5 Cost-Effective Design of Full-Duplex Millimeter-Wave RoF Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 11.3.5.1 Millimeter-Wave RoF Downlink with Remote

Local Oscillator Delivery . . . . . . . . . . . . . . . . . . . . . . . 406 11.3.5.2 Optical Wavelength Reuse in Full-Duplex

Millimeter-Wave RoF Links . . . . . . . . . . . . . . . . . . . . . 407 11.4 Multimode Radio-over-Fiber Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

11.1 Introduction Millimeter waves have found potential application in the fields of communications, radar, radiometry, spectroscopy, and radio astronomy, etc. Electronic generation of millimeter waves using oscillator and frequency multiplexers has been well investigated; however, such millimeter-wave sources are usually bulky and heavy. In addition, due to the relatively large air propagation loss, the free space transmission distance of millimeter-wave signals is generally relatively short. These facts limit the use of millimeter waves in many modern systems.