ABSTRACT

Even though the Type 0 state is essential for life on Earth, it also exposes life to extreme natural hazards. The combination of our increasingly interconnected world with its increasingly urbanised and growing population has raised the level of threat from extreme natural hazards to one without historical precedent. According to Huppert and Sparkes (2006), the possible consequences of such an event include global economic crises; many millions to tens of millions of deaths; catastrophic and irrecoverable destruction of mega-cities and possibly whole countries; global disruption of food supplies, transport and communications; severe climate states; and environmental pollution on a global scale. Serious global economic, social and environmental consequences do not require just an asteroid strike or super-eruption but could follow from a regional event or one in a strategically important location. In 1815 an eruption in Indonesia was responsible for the lack of a summer season in Europe and North America, and today the real prospect of a major earthquake occurring under the mega-city of Tokyo could precipitate global economic turmoil (McGuire, 2006). Awareness of extreme natural hazards and their consequences has only recently begun to move beyond scientific circles. As a result, the application of scientific understanding has been uneven. Science has an important role to play in the systematic identification of extreme hazards and areas at risk, though its ability to forecast and predict such extreme events is varied, as is summarised below.