ABSTRACT

This chapter considers the problem of spacecraft formation flying in the presence of periodic disturbances. In particular, the nonlinear position dynamics of a follower spacecraft relative to a leader spacecraft are utilized to develop a learning controller that accounts for the periodic disturbances entering the system model. Using a Lyapunov-based approach, a full-state feedback control law, a parameter update algorithm, and a disturbance estimate rule are designed that facilitate the tracking of given reference trajectories in the presence of unknown spacecraft masses. Illustrative simulations are included to demonstrate the efficacy of the proposed controller.