ABSTRACT

Using logarithmic differentiation and following the procedure:

(i) Since y= 3e 2θ sec2θ√ (θ −2)

then ln y= ln { 3e2θ sec2θ√

(θ −2) }

= ln ⎧⎨ ⎩3e

⎫⎬ ⎭

(ii) ln y= ln3e2θ + ln sec2θ − ln(θ −2) 1 2

i.e. ln y= ln 3+ ln e2θ + ln sec2θ − 12 ln(θ −2)

i.e. ln y= ln 3+2θ + ln sec2θ − 12 ln(θ −2)

(iii) Differentiating with respect to θ gives: 1 y dy dθ

=0+2+ 2sec2θ tan2θ sec2θ

(θ −2) from equations (1) and (2)

(iv) Rearranging gives: dy dθ

= y { 2+ 2 tan2θ − 1

2(θ − 2) }

(v) dy dθ

= 3e 2θ sec2θ√ (θ − 2)

2+2tan2θ − 1

2(θ − 2) }

Problem 4. Differentiate y= x 3 ln2x

ex sin x with respect

to x

Using logarithmic differentiation and following the procedure gives:

(i) ln y= ln { x3 ln2x ex sin x

}

(ii) ln y= ln x3+ ln(ln2x)− ln(ex)− ln(sin x) i.e. ln y=3ln x + ln(ln2x)− x − ln(sin x)

(iii) 1 y dy dx

= 3 x

ln2x −1− cosx

sin x

(iv) dy dx

= y {

3 x

+ 1 x ln2x

−1− cot x }

(v) dy dx

= x 3 ln2x ex sinx

{3 x

+ 1 x ln2x

−1−cotx }

Now try the following Practice Exercise

Practice Exercise 243 Further problems on differentiating logarithmic functions (answers on page 1137)

In Problems 1 to 6, use logarithmic differentiation to differentiate the given functions with respect to the variable.