ABSTRACT

This second edition of Digital Optical Communications provides a comprehensive treatment of the modern aspects of coherent homodyne and self-coherent reception techniques using algorithms incorporated in digital signal processing (DSP) systems and DSP-based transmitters to overcome several linear and nonlinear transmission impairments and frequency mismatching between the local oscillator and the carrier, as well as clock recovery and cycle slips. These modern transmission systems have emerged as the core technology for Tera-bits per second (bps) and Peta-bps optical Internet for the near future.

Featuring extensive updates to all existing chapters, Advanced Digital Optical Communications, Second Edition:

  • Contains new chapters on optical fiber structures and propagation, optical coherent receivers, DSP equalizer algorithms, and high-order spectral DSP receivers
  • Examines theoretical foundations, practical case studies, and MATLAB® and Simulink® models for simulation transmissions
  • Includes new end-of-chapter practice problems and useful appendices to supplement technical information

Downloadable content available with qualifying course adoption

Advanced Digital Optical Communications, Second Edition supplies a fundamental understanding of digital communication applications in optical communication technologies, emphasizing operation principles versus heavy mathematical analysis. It is an ideal text for aspiring engineers and a valuable professional reference for those involved in optics, telecommunications, electronics, photonics, and digital signal processing.

chapter 1|20 pages

Introduction

chapter 2|62 pages

Optical Fibers

chapter 3|52 pages

Optical Transmitters

chapter 11|18 pages

OFDM Optical Transmission Systems

chapter 15|54 pages

Optical Soliton Transmission System

chapter 16|38 pages

Higher-Order Spectrum Coherent Receivers