ABSTRACT

Elastic cross section 5-500 Lee et al. (1992) Total cross section 05-160 Szmytkowski and Macia¸g

(1991) Attachment cross section 0-55 Krishnakumar and

Srivastava (1988) Total cross section 100-1600 Dalba et al. (1980) Characteristic energy (56-1412) Lakshminarasimha and

Lucas (1977) Vibrational excitation 01-30 Tronc et al. (1975) Total cross section 0-10 Zecca et al. (1974) Swarm parameters 01-10 Parkes and Sugden (1972) Attachment processes 0-3 Spence and Schulz (1971) Ionization cross section 95-1000 Rapp and Englander-

Golden (1965) Attachment cross section

65-13 Rapp and Briglia (1965)

Attachment coefficient (0-15) Bradbury (1934)

Note:Bold font indicates experimental study

242 and 243Figures 241 and 242 show graphical presentation The highlights of the cross sections are

1 As the energy decreases toward zero the cross section increases This is attributed to the formation of negative ion, NO−

2 A series of sharp peaks (about 10) attributed to vibrational excitation of the NO−, with a spacing of ~165 meVTable 244 shows the energy corresponding to the peaks

TABLE 24.2 Total Scattering Cross Sections for NO in the Low Energy Region

Energy (eV)

QT (10−20 m2)

Energy (eV)

QT (10−20 m2)

Energy (eV)

QT (10−20 m2)

0037 1751 0400 10125 0780 10650

0039 1341 0410 10375 0790 10620

0040 1265 0420 10400 0800 10501

0050 1213 0430 10400 0810 10501

0060 1068 0440 10170 0820 10625

0070 95783 0450 9875 0830 10875

0080 90410 0460 9625 0840 11125

0090 83253 0470 9250 0850 11370

0100 79364 0480 8875 0860 11625

0110 76997 0490 8834 0870 11759

0120 75913 0500 8800 0880 11882

0130 74725 0510 8810 0890 11995

0140 73367 0520 9000 0900 12000

0150 71673 0530 9375 0910 11995

0160 71410 0540 9600 0920 11750

0170 71250 0550 9875 0930 11375

0180 72000 0560 10250 0940 11250

0190 73750 0570 10500 0950 10750

0200 7750 0580 10700 0960 10620

0210 8125 0590 10750 0970 10620

0220 8675 0600 10800 0980 10750

0230 9125 0610 10750 0990 11000

0240 9600 0620 10605 1000 11125

0250 9750 0630 10375 1010 11250

0260 9750 0640 10245 1020 11500

0270 9700 0650 10138 1030 11750

0280 9500 0660 10250 1040 11875

0290 9125 0670 10375 1050 11895

0300 8875 0680 10625 1060 11914

0310 8500 0690 10825 1070 11915

0320 8250 0700 11000 1080 11875

0330 8119 0710 11161 1090 11750

0340 8250 0720 11250 1100 11625

0350 8400 0730 11262 1110 11416

0360 8750 0740 11250 1120 11250

0370 9125 0750 11161 1130 11114

0380 9400 0760 11000 1140 11103

0390 9800 0770 10875 1150 11114

Cross Sections for NO in the Low Energy Region

Energy (eV)

QT (10−20 m2)

Energy (eV)

QT (10−20 m2)

Energy (eV)

QT (10−20 m2)

1160 11125 1470 10827 1900 10115

1170 11250 1480 10801 1920 10050

1180 11416 1490 10773 1940 10000

1190 11563 1500 10765 1960 9951

1200 11630 1520 10801 1980 9916

1220 11700 1540 10875 2000 9840

1240 11625 1560 10889 2050 9750

1250 11500 1580 10855 220 9570

1260 11375 1600 10750 250 9375

1270 11250 1620 10625 300 9134

1280 11130 1640 10510 350 9063

1290 11120 1650 10500 400 9000

1300 11110 1660 10450 450 9000

1320 11110 1680 10382 500 8950

1340 11130 1700 10382 550 9000

1360 11325 1720 10382 600 9000

1380 11375 1740 10383 650 9100

1390 11370 1760 10375 700 9130

1400 11360 1780 10313 750 9200

1410 11265 1800 10250 800 9250

1420 11249 1820 10200 850 9344

1430 11130 1840 10120 900 9437

1440 11005 1850 10115 950 9500

1450 10887 1860 10110

1460 10875 1880 10110

Source:With kind permission from Professor Buckman Note:Data in tabulated form (Brunger and Buckman, 2002)

TABLE 24.3 Total Scattering Cross Sections for NO in the High Energy Range

Serial Number

Energy (eV)

QT (10−20 m2)

Serial Number

Energy (eV)

QT (10−20 m2)

1 04 91 15 12 109

2 05 925 16 15 116

3 06 102 17 20 113

4 07 108 18 25 112

5 08 106 19 35 104

6 1 114 20 50 965

7 12 123 21 75 891

8 15 121 22 100 841

9 2 105 23 125 795

10 25 968 24 150 749

11 35 925 25 175 705

12 5 93 26 200 681

13 75 958 27 225 638

14 10 103 28 250 602

eV; this feature is also common to many gases

Tables 245 and 246 and Figures 243 and 244 show the differential cross sections for elastic scattering for NOPoints to note are(Brunger and Buckman, 2002):

1 In the low energy range, 15-50 eV, the differential cross section shows a peak at about 60° angle, falling off in magnitude toward both smaller and larger angles

10,000 Energy (eV)

Total scatterring (NO)

0.1 1 10 100 1000 0

5Q T

(1 0-

2 )

Total Scattering Cross SNO in the H Energy Range

Serial Number

Energy (eV)

QT (10−20 m2)

Serial Number

Energy (eV)

QT (10−20 m2)

29 121 847 38 484 378

30 144 822 39 576 337

31 169 723 40 676 289

32 196 672 41 784 265

33 225 610 42 900 234

34 256 583 43 1024 212

35 289 529 44 1156 193

36 324 510 45 1296 169

37 400 425 46 1444 158

Source:Reproduced with kind permission of Institute of Physics, England Note:Serial numbers (1-28) are from Szmytkowski and Macia¸g (1996) and

(29-46) are from Dalba et al (1980)

Q T (1

m 2 )

TABLE 24.4 Experimental Positions of Peaks in Total Scattering Cross Section

Peak Energy (eV) Separation (meV)

1 0293

2 0460 164 3 0624 161 4 0768 149 5 0933 165 6 1104 171 7 1272 168 8 1441 169 9 1608 167

10 1790 182

Source: Adapted from Alle, D T, M J Brennan, and S J Buckman, J. Phys. B: At. Mol. Opt. Phys, 29, L277, 1996

TABLE 24.5 Differential Cross Sections for Elastic Scattering for NO

Differential Cross Section (10−20 m2/sr)

Angle (°)

Energy (eV)

1.5 3.0 5.0 7.5 10.0

15 0812 0941 133 187

20 0799 085 0949 1234 1629

25 0908 101 1186 1475

30 0843 0942 1095 1202 1375

35 0993 1104 1209 1333

40 091 1028 1121 1221 1292

45 1056 1174 1193 123

50 0955 1081 1148 1207 1172

55 1064 113 1086

60 096 1074 1114 1067 0996

65 1054 092

70 0947 1004 0976 0873 0752

75 0928 0631

80 0895 0864 0802 0647 0517 continued

2 At energies in the range from 75 to 40 eV the differential cross section decreases with increasing angle and this characteristic is attributed to the electronic polarization of the molecule

See Tables 247, 248 and Figure 245

The ro-vibrational excitation cross sections for ν = 0 → 1 and ν = 0 → 2 are shown in Table 249See Table 244 for individual energy levels

Figure 246 shows the lower excitation states of NO (Raju, 2005)Figure 247 shows the integral excitation cross sections (Brunger et al, 2000)

Differential Cross Section (10−20 m2/sr)

Angle (°)

Energy (eV)

1.5 3.0 5.0 7.5 10.0

85 081 0439

90 0838 0742 0642 0496 0373

95 0696 0345

100 0805 0622 0534 0409 0333

105 0625 0355

110 0774 0597 0472 0395 0366

115 0761 0568 0404

120 0538 0443 0421 0448

125 075 0526 0473

130 0517 0441 047 0519

Source:Adapted from Mojarrabi, Bet al, J. Phys. B: At. Mol. Opt. Phys, 28, 487, 1995

TABLE 24.6 Differential Cross Section for NO at Higher Energy

Differential Cross Section (10−20 m2/sr)

Angle (°)

Energy (eV)

15 20 30 40

10 9874

15 36 4236 6484 6594

20 2907 3444 449 4364

25 2424 2968 3387 3042

30 1922 2132 229 1958

35 1639 1764 1671 1275

40 1409 1502 1323 0885

45 1264 1231 0987 0578

50 1109 1036 0739 0410

55 0910 0737 0576 0318

60 0739 0567 0417 0245

65 0622 0481 0296 0189

70 0529 0361 0249 0149

75 0428 0285 0193 0121

80 0343 0233 0157 0101

85 0284 0202 0148 008

90 0278 0186 0138 007

95 0274 0183 0137 0066

100 0305 0197 0136 0068

105 0326 0213 0166 0082

110 0382 0246 0206 0110

115 0436 0294 0262 0152

120 0472 0326 0315 0206

125 0511 0382 0417 0277

130 0536 0454 0498 0345

Source:Adapted from Mojarrabi, Bet al, J. Phys. B: At. Mol. Opt. Phys, 28, 487, 1995

0 60 120 1800 0

0.5

(1 0-

2 / sr

) Q d

m 2 /

sr )

1.5

1.5

0.5

5.0 eV

(NO)

(NO)

7.5 eV 10 eV

120 Angle (°) Angle (°)

0 0

0.5

0.5

60 120

1.5 eV

Angle (°) 180 0 60

Differential scattering

120 Angle (°)

0 60 120 180 0

Angle (°) 0 60 120 180

Angle (°)

0 60 120 180 0

20 eV

0 60 120 180 Angle (°)Angle (°)

(NO) (NO) 30 eV

40 eV

15 eV (NO)

Differential scattering

Cross Sections for NO in the High Energy Range

Energy (eV) Qel (10−20 m2) QM (10−20 m2)

50 945 521

100 1214 864

200 1433 1433

50 766 766

100 433 433

200 322 322

500 104 104

Note: Differential cross sections of Lee et al(1992) integrated by Raju (2005)

TABLE 24.7 Integral Elastic and Momentum Transfer Cross Sections for NO

Energy (eV) Qel (10−20 m2) QM (10−20 m2)

15 10473 8415

3 9604 7044

5 9239 6296

75 9095 5797

10 9241 5539

15 9714 5116

20 9707 4232

30 9314 3547

40 8214 2546

50 6444

Note: See Figure 245 for graphical presentation (Brunger and Buckman 2002)

TABLE 24.9 Cross Section for Ro-Vibrational Excitation

Energy (eV) Q0→1 (10−20 m2) Q0→2 (10−20 m2)

75 0028

100 0074 0014

150 0270 0073

200 0097 0022

300 0022

400 0014

Source:Adapted from Brunger, MJet al, J. Phys. B: At. Mol. Opt. Phys, 33, 809, 2000

0 0

20 Elastic scattering Momentum transfer

Nitric oxide (NO)

Energy (eV) 30 40 5010

(1 0-

2 )

Electron attachment occurs by different processes according to

e NO ( 0) NO ’)

NO ( 0) e

+ → ∏ = → ∑ → ∏ = +

− −, ( ,

,

ν 3 ν

ν (241)

0.04

(NO)

X1Σ F2Δ

E2Σ+

C2Π

X2Πr

B2Πr A2Σ+

0.12 Internuclear distance (nm)

Po te

nt ia

le ne

rg y(

eV )

0.20 0.28

0.001 0 40

Energy (eV) 20

A state

Integral Qex in NO

C state All states

B state E state F state

0.01Cr os

ss ec

tio n

(1 0-

2 ) 0.1

TABLE 24.10 Partial and Total Ionization Cross Sections for NO

Lindsay et al. (2000) Rapp and Englander-Golden (1965)

Energy (eV)

Qi (10−20 m2)

Energy (eV)

Qi (10−20 m2)

Energy (eV)

Qi (10−20 m2)

125 0048 95 0011 60 274 15 021 10 0018 65 282 175 048 105 0031 70 291 20 059 11 0047 75 297 225 075 115 0064 80 3035 25 102 12 0092 85 307 30 133 125 013 90 311 35 168 13 018 95 313 40 199 135 024 100 3140 45 232 14 0305 105 315 50 258 145 036 110 315 55 276 15 042 115 315 60 297 155 046 120 314 70 318 16 050 125 314 80 336 165 0545 130 312 90 351 17 0585 135 3105 100 355 175 0625 140 310 125 356 18 0663 145 309 150 345 185 0701 150 308 200 316 19 0736 160 304 250 291 17 0585 180 296 300 260 175 0625 200 286 400 224 18 066 250 265 500 196 185 070 300 2445 600 174 19 074 350 227 800 141 195 077 400 211 1000 120 20 081 450 198

22 096 500 186 24 111 550 176 26 126 600 167 28 140 650 159 30 152 700 151 32 165 750 145 34 177 800 139 36 187 850 133 38 199 900 1215 40 208 950 124 45 2305 1000 1205 50 248 55 261

Note:See Figures 248 and 249 for graphical presentation

NO( 0) e

→ ∏ = +

,

ν

(242)

e NO ( 0) NO )

NO( 0) e

+ → ∏ = → ∑ → ∑ = +

, ( ,

,

ν ν

ν

(243)

e NO N O+ → + −

(244)

e NO N* O+ → + −

(245)

The first step in Reactions 241 through 243 is electron attachment, the state of the NO− ion as shown in parenthesis, and the second step is auto detachment of the electron with the negative ion reverting to the ground state All three reactions occur below 20 eV Reaction 244 is dissociative attachment with onset energy of ~5074 eV (Denifl et al, 1998) Reaction 245 yields excited nitrogen atom, with two channels and corresponding threshold energies of 7457 (excitation energy = 2383 eV) and 8650 eV (excitation energy = 3576 eV) (Denifl et al, 1998) See Table 2411

TABLE 24.11 Dissociative Attachment Cross Sections for NO

Energy (eV)

Qa (10−22 m2)

Energy (eV)

Qa (10−22 m2)

67 0009 91 1003

68 0018 92 0950

69 0044 93 0888

70 0079 94 0827

71 0150 95 0748

72 0334 96 0651

73 0537 97 0581

74 0712 98 0510

75 0862 99 0440

76 0959 100 0378

77 1038 101 0317

78 1076 102 0264

79 1103 103 0220

80 1114 104 0176

81 1117 105 0141

82 1116 106 0114

83 1109 107 0092

84 1100 108 0079

85 1103 109 0070

86 1106 110 0062

87 1100 115 0044

88 1088 120 0044

89 1069 125 0035

90 1038 130 0035

Source:Adapted from Rapp, Dand DD Briglia, J. Chem. Phys., 43, 1480, 1965

Note:See Figure 2410 for graphical presentation

Cr os

ss ec

tio n

(1 0-

2 )

Io ni

za tio

n cr

os ss

ec tio

n (1

m 2 )

low values of E/N (Parkes and Sugden, 1972)Slight dependence on gas number density is observed and attributed to the three-body processes at low values of E/N

Table 2412 shows the characteristic energy Dr/µ and DL/µ for NO See Figure 2412 for graphical presentation

See Table 2413

Gas constants evaluated according to the expression

α N

F GN E

= −  

 exp (246)

0 0.0

0.4

0.8

Q a (1

m 2 )

1.2

1.6

2.0

10 20

30 Energy (eV)

40 50 60

0.1 1

Dr ift

ve lo

cit y(

10 3 m

/s )

1 E/N (Td)

Nitric oxide (NO)

Energy for NO

Mechlin´ska-Drewko et al. (1999) Lakshminarasimha and

Lucas (1977)

E/N (Td) Dr/µ (V) DL/µ (V) E/N (Td) Dr/µ (V)

12 02578 0094 285 392 20 0315 014 300 408 25 0432 350 444 30 0594 400 468 40 0978 048 450 495 50 146 068 500 531 60 169 081 600 597 70 191 700 620 100 249 152 800 611 150 321 229 900 634 200 391 312 1000 689 250 419 384 1100 735

300 435 433 1200 795

0.01 10 100

Nitric oxide (NO)

E/N (T/d) 1000

0.1D r /μ

,L /μ

TABLE 24.13 Density-Reduced Ionization Coefficients for NO

E/N (Td) α/N (10−21 m2) E/N (Td) α/N (10−21 m2)

50 00479 350 590 60 00823 400 717 70 0151 450 828 80 0230 500 934 90 0308 600 1164 100 0412 700 1405 125 0718 800 1560 150 103 900 1717 175 147 1000 1945 200 203 1100 2166 250 337 1200 2293 300 446

Source:Adapted from Lakshminarasimha, CSand JLucas, J. Phys. D: Appl. Phys, 10, 313, 1977

Note:See Figure 2413 for graphical presentation

50 ≤ E/N ≤ 200 Td S

Attachment coefficients for NO measured by Parkes and Sugden (1972) are found to depend on N2, as shown in Figure 2414

The measured mobility of NO+ referred to 273 K and N = 269 × 1025/m3 is 19 × 10−4 m2/s V (Gunton and Shaw, 1965)

Table 2415 shows the consolidated cross sections for NO See Figure 2415 for graphical presentation

0.1 0.01

0.1

η/ N2

(1 0-

2) ,α

/N (1

m 2 )

Nitric oxide (NO)

Attachment coefficient

α/N

α/N2

Ionization coefficient

1 10 E/N (Td)

100 1000

0 0.01

0.1

α/ N

(1 0-

2 )

10 –44

(N/E 1000) Lakshminarasimha et al. (1977)

200 400 600

Nitric oxide (NO)

E/N (Td) 800 1000 1200

TABLE 24.14 Attachment Rate Constants for NO

Rate Temperature

(eV) Method Reference

580 × 10−43 (m6/s) 300 K FA Mcfarland et al (1972)

14 × 10−17 (m3/s)a 296 K SA Puckett et al (1971)

680 × 10−44 (m6/s) 296 K 680 × 10−43 (m6/s) 196 K MWCW Gunton and

Shaw (1965)

22 × 10−43 (m6/s) 298 K 11 × 10−43 (m6/s) 358 K

Note:Three-body attachment unless otherwise mentioned FA = flowing afterglow; MWCM = microwave cavity method; SA = stationary afterglow

a Two-body attachment processes

TABLE 24.15 Consolidated Cross Section for NO (1.5-500eV)

Energy (eV)

Cross Section (10−20 m2)

Difference (%)Qel QV Qex Qi

QT (sum)

QT (expt)

15 10473 — — — 10473 123 1485

30 9604 — — — 9604 945 −156 50 9239 — — — 9239 922 −022 75 9095 0028 9123 952 417

100 9241 0088 — 0018 9347 101 745

150 9714 0343 0270 0418 10745 1150 656

200 9707 0119 0346 0813 10985 1140 360

300 9314 0022 0521 1522 11379 1080 −536 400 8214 0014 0497 2086 10811 103 −496 500 6444 — 0344 2482 9270 96 344

100 433 03 314 778 848 825

200 322 03 286 638 681 631

500 103 03 186 319 355 1014

Source:Adapted from Raju, GG, Gaseous Electronics: Theory and Practice, Taylor & Francis, London, 2005, p 254

1 0.01

0.1

Cr os

ss ec

tio n

(1 0-

2 )

C

D B E A

100Energy (eV) 1000