ABSTRACT

Szmytkowski et al. (1987)a Szmytkowski et al.

(1987)a

Energy (eV)

QT (10-20 m2)

Energy (eV)

QT (10-20 m2)

Energy (eV)

QT (10-20 m2)

05 1580 46 96 722 144

06 1370 47 93 81 1381

07 1190 48 866 902 1339

08 1020 50 814 100 1254

09 915 52 778 1102 1214

10 835 54 770 121 1165

11 763 56 810 1322 1117

12 710 58 810 144 1103

13 672 59 810 169 993

14 634 60 830 196 925

15 612 65 842 225 871

16 607 70 901 256 831

18 589 75 974 289 784

20 590 80 983 324 731

22 611 85 105 361 679

24 673 90 111 400 640

26 723 95 116 441 612

28 760 10 120 484 558

30 860 12 132 576 493

31 910 135 136 676 441

32 960 15 139 784 394

33 1110 175 149 900 353

34 1280 20 158 1024 328

35 1360 225 158 1156 295

36 1480 25 160 1296 269

365 1540 275 162 1444 238

37 1600 30 162 1600 213

38 167 35 161 1764 192

39 161 40 159 1936 179

395 152 45 158 2116 162

40 142 50 151 2304 15

41 130 60 149 2500 129

42 124 65 144 2704 127

43 114 70 139 2916 115

44 111 80 134

45 104

Source: Szmytkowski, C et al, J. Phys. B: At. Mol. Phys, 20, 5817, 1987 With kind permission of Institute of Physics, England

a Measurements in another laboratory

Total Scattering Cross SCO2 Energy (eV) QT (10-20 m2) Energy (eV) QT (10-20 m2)

005 6794 275 626

006 6382 300 732

007 6012 320 905

009 5641 330 1021

009 5147 335 1081

011 4735 340 1142

012 4365 345 1203

014 3953 350 1264

016 3624 355 1324

018 3418 360 1384

019 3006 365 1438

024 2718 370 1480

027 2512 375 1509

030 2224 380 1534

040 1935 385 1551

048 1688 390 1547

050 1556 395 1529

060 1292 40 1506

07 1146 41 1448

08 1012 42 1382

09 902 43 1315

10 817 45 1171

12 706

14 633

16 590

18 567

20 556

225 565

250 579

Source:Adapted from Ferch, J, CMasche, and WRaith, J. Phys. B: At. Mol. Phys, 14, L97, 1981

Note:005 ≤ ε ≤ 45 eV Digitized from graphical presentation

Figure 273 shows the differential scattering cross sections for the bending modes (010) and (020)General comments for differential scattering cross section are

1The rotational and vibrational excitation produces a change in the shape of the angular distribution of the differential scattering cross section (Figure 274)

2 The differential cross section for the bending mode is approximately symmetric about 90°, but not so for symmetrical stretching

3 The cross section for asymmetric mode is about 10% compared to the two other modes

Table 275 and Figure 276 show the momentum transfer cross section for the energy range 0-1000 eV

Inelastic processes are listed in Table 276 (Lowke et al, 1973)Table 277 gives detailed vibrational energy levels (Boness and Schulz, 1974)Energy and vibrational spacing of CO2− ion are shown in Table 278 (Sanche and Schulz, 1973)

See Table 279

0 50 100 150 Angle (°)

Di ffe

re nt

ial cr

os ss

ec tio

n (A

rb itr

ar yu

ni ts)

10 ×0.1

(001)

(010) (100)

TABLE 27.4 Elastic Scattering Cross Sections for CO2 Energy (eV) Qel (10-20 m2) Energy (eV) Qel (10-20 m2)

0155 250 600 110 105 58 900 75 20 462 100 68 40 110 500 298 100 1061 800 231 200 1459 1000 192 500 117

Source:Adapted from Raju, GG, Gaseous Electronics: Theory and Practice, Taylor & Francis, London, 2005

Note:See Figure 275 for graphical presentation

0.01 0.1 1 10 100 1000 10,000 Energy (eV)

Cr os

ss ec

to n

(1 0-

2 )

QT (CO2)

0 50 100 150 0 50 100 150 Scattering angle (°)

D CS

(1 0-

2 / sr

)

D CS

(1 0-

2 / sr

)

Scattering angle (°)

0.1 1.5 eV

3.5 eV

3.8 eV

4.0 eV

2.0 eV

3.0 eV

0.1

0.1

0.1

0.1

0.1

TABLE 27.5 Momentum Transfer Cross Sections in CO2 Energy (eV)

QM (10-20 m2)

Energy (eV)

QM (10-20 m2)

Energy (eV)

QM (10-20 m2)

0000 6000 1000 555 80 807

0001 5400 12 502 90 924

0002 3870 13 490 100 994

0010 1700 15 483 150 1119

0020 1190 20 453 200 1017

0080 580 30 596 300 751

0100 520 38 769 600 415

0150 400 40 722 1000 265

0200 310 50 566 2000 108

0300 2030 60 669 3000 066

0400 1430 65 656 5000 036

0500 1090 70 656 10000 014

Note:0-15 eV and 100-1000 eV, LPitchford, personal communication, 2003, see Raju (2005); 15-100 eV, Tanaka et al (37, 1998)

0 5

1 5

10 Energy (eV)

In te

gr at

ed Q

M (1

m

1 Momentum transfer Cross sections (CO2)2

3 4

TABLE 27.6 Selected Inelastic Processes and Threshold Energies in CO2 Energy loss

Threshold (eV) Process Remarks

0083 0083 000 → 010 I Bending mode 0167 0167 000 → 020 + 100 Bending and

symmetrical stretching

0291 0291 000 → 001 I Asymmetrical stretching

0252 25 000 → 0n0 + n00 Bending and symmetrical stretching

0339 15 000 → 0n0 + n00 Bending and symmetrical stretching

0422 25 000 → 0n0 + n00 Bending and symmetrical stretching

0505 25 000 → 0n0 + n00 Bending and symmetrical stretching

25 25 000 → 0n0 + n00 Bending and symmetrical stretching

385 385 e + CO2 → CO + O− Dissociative attachment 70 70 Electronic excitation

105 105 Electronic excitation

133 133 e + CO2 → CO2+ + 2e Ionization 209 209 e + CO2 → CO+ + O + 2e Dissociative ionizationa

226 226 e + CO2 → CO + O+ + 2e Dissociative ionizationa

246 246 e + CO2 → C+ + O2 + 2e Dissociative ionizationa

Sources: Adapted from Lowke, J J, A V Phelps, and B W Irwin, J. Appl. Phys, 44, 4664, 1973; Crowe, Aand JWMcConkey, J. Phys. B: At. Mol. Phys, 7, 349, 1974

Note:A more detailed energy list is given in Table 277 a Reference for the last three rows

0 5 5 5

1 10 Energy (eV)

Excitation Levels of CO2−

Vibrational Transition: ν → ν + 1 Spacing (meV)

Energy of Vibrational State (eV)

0 → 1 138 314 1 → 2 136 328 2 → 3 134 341 3 → 4 132 354 4 → 5 130 367 5 → 6 128 380 6 → 7 127 393 7 → 8 125 406 8 → 9 123 418 9 → 10 122 431 10 → 11 121 442 11 → 12 454

Source:Adapted from Sanche, Land GJSchulz, J. Chem. Phys, 58, 479, 1973

Note:See Figure 277 for graphical presentation

Vibrational Energy LO2

Calculated Energy Level (eV) Experimental Energy

Loss Peak (eV)Designation n10 n00

0110 0083 0083

1000 0167 0168

1110 0250 0250

2000 0333 0335

2110 0416 0415

3000 0498 0500

310 0582 0580

400 0662 0665

410 0746 0740

500 0825 0820

510 0910 0900

600 0967 0985

610 1072 106

700 1149 114

710 1234 123

800 1309 130

810 1395 139

900 1469 147

910 1555 155

10,00 1627 161

10, 10 1714 170

11, 00 1785

11, 10 1872 187

12, 00 1942

12, 10 2030 202

13, 00 2098

13, 10 2186 217

14, 00 2253

14, 10 2342 235

15, 00 2407

15, 10 2496 250

16, 00 2561

16, 10 2650 265

17, 00 2713

17, 10 2803 278

18, 00 2864

18, 10 2955 293

19, 00 3015

19, 10 3106 310

20, 00 3165

20, 10 3256 323

21, 00 3313

21, 10 3405

Source:Adapted from Boness, MJWand GJSchulz, Phys. Rev. A, 9, 1969, 1974

2.5

Sc at

te rin

gc ro

ss se

ct io

n (∼

10 –2

0 m 2 )

3.0 3.5 Energy (eV)

4.0 5.0

CO2

A discussion of excitation levels of the molecule is given by Raju (2005)Table 2710 shows excitation cross sections recommended by Raju (2005) and Figure 278 shows selected available data Also see Figure 279

See Table 2711

Attachment processes according to Spence and Schulz (1974) are as follows

CO2 + e → CO + O− (271)

CO2 + e → C + O2− (272)

O− + CO2 → CO + O2− (273)

CO2 + e → C− + 2O (274)

Following Reaction 271, three-body process may also occur at higher gas number densities according to

O− + CO2 + CO2 → O3− + CO2 (275)

Reactions 271, 272, and 274 are dissociative attachments and Reaction 273 is an ion-molecule reactionReaction 275 exhibits dependence on gas number density (Table 2717) The observed peak energy and peak cross section are shown in Table 2712

Vibrational Excitation Cection for CO2

Energy (eV) Mode (100)

Qvib (10-20 m2) Mode (010)

Qvib (10-20 m2) Mode (001)

Qvib (10-20 m2)

01 2224

02 1882

03 1236 1054

04 0967 1695

05 0050 0835 1628

08 0627 1216

10 0075 0498 0997

15 0225 0411 0761

20 0562 0453 0646

25 2946 0678 0558

30 2737 1122 0490

35 2158 2945 0466

40 1291 3400 0450

45 0290 2661 0434

50 0874 1320 0427

60 0405 0564 0408

70 0215 0460 0452

80 0225 0452 0467

90 0193 0321 0370

100 0165 0211 0243

120 0059 0053 0231

140 0020 0013 0199

150 0007

160 0007 0183

180 0002 0156

200 0002 0152

30 0100

40 008

50 0065

60 0057

70 0050

80 0046

90 0043

100 0040

Source:Adapted from Nakamura, Y, Aust. J. Phys, 48, 357, 1995 Note:Digitized and interpolated from original presentationSee Figure 278

for graphical presentation

Cross Sections for CO2 Recommended

Energy (eV) Qex (10-20 m2) Energy (eV) Qex (10-20 m2)

12 002 65 260

13 017 70 260

14 039 75 260

15 060 80 263

16 088 85 262

17 116 90 260

18 135 95 260

19 148 100 261

20 161 125 260

25 201 150 258

30 220 175 254

35 236 200 248

40 245 225 242

45 250 250 236

50 256 275 226

55 257 300 222

60 259

Source:Adapted from Raju, GG, Gaseous Electronics: Theory and Practice, Taylor & Francis, London, 2005

Table 2713 and Figure 2713 present the attachment cross sections for CO2 (Rapp and Briglia, 1965)

10 100 1000 Energy (eV)

CO2

0.1

0.01

Cr os

ss ec

tio n

(1 0-

2 )

TABLE 27.11 Recommended Total Ionization Cross Section for CO2

Straub et al. (1996) Rapp and Englander-Golden (1965)

Energy (eV) Qi (10-20 m2) Energy (eV) Qi (10-20 m2)

145 0055

15 0143 15 0097

20 0564 155 0135

25 1115 16 0174

30 1698 165 0215

35 2095 17 0255

40 2414 18 0333

45 2673 185 0373

50 2881 19 0427

55 3062 195 0452

60 3239 21 0577

65 3356 22 0676

70 3454 23 0777

75 3533 24 0880

80 3623 26 1117

85 3682 28 1337

90 3739 30 1513

95 3777 32 1654

100 3810 34 1777

110 3823 36 1891

120 3813 38 1997

140 3774 40 2111

160 3643 45 2366

180 3546 50 2586

200 3426 55 2762

225 3300 60 2929

250 3139 65 3070

275 3046 70 3175

300 2887 75 3272

350 2632 80 3351

400 2480 85 3413

0.1

0.01

0.001 0 10 20 30 40

Cr os

ss ec

tio n

(1 0-

2 )

Cr os

ss ec

tio n

(1 0-

2 )

Mode (100)

CO2

Energy (eV) Energy (eV)

0.1

0.01 0.1 1 10 100

0.1

0.01 0.1 1 10

Energy (eV) 100

Cr os

ss ec

tio n

(1 0-

2 )

Mode (010)

Recommended Total ICross S

Straub et al. (1996) Rapp and Englander-Golden (1965)

Energy (eV) Qi (10-20 m2) Energy (eV) Qi (10-20 m2)

450 2273 90 3457

500 2122 100 3518

550 1988 105 3527

600 1879 110 3545

650 1785 115 3554

700 1702 120 3554

750 1622 125 3548

800 1541 130 3545

850 1464 135 3536

900 1419 140 3518

950 1371 145 3510

1000 1312 150 3483

160 3439

180 3360

200 3255

250 3017

300 2780

350 2595

400 2419

450 2269

500 2137

600 1909

700 1733

800 1574

900 1469

1000 1399

Note:The total cross sections from Straub et al(1996) are calculated from partial ionization cross sectionsSee Figures 2710 through 2712 for graphical presentation

10 100 Energy (eV)

Cr os

ss ec

tio n

(1 0-

2 )

10 100 1000 10 100 1000

10 100 1000 10 100 1000

A A

C

AA

D E

B

CO2

× 100

Energy (eV)

5 4 3 2 1 0

5 4 3 2 1 0

5 4 3 2 1 0

10 100 1000

10 100 1000

10 100 1000 Energy (eV)

Io ni

za tio

n cr

os ss

ec tio

n (1

m 2 )

CO2 A

A

A

H

G

F ×10

×1000

×1000

See Table 2715

1 0.1

Cr os

ss ec

tio n

(1 0-

2 )

10 Energy (eV)

Attachment cross section

(CO2)

Attachment Processes

Ion Species Peak Energy

(eV) Peak Cross

Section (10-24 m2) Process

O− 43 168 271

81 487 271

O2 − 82 271 followed by 273

113 ~1 × 10−4 273 129 ~1 × 10−4 273

C− 160 274

170 274

187 ~020 274

Source:Adapted from Spence, Dand GJSchulz, J. Chem. Phys, 60, 216, 1974

TABLE 27.13 Total Attachment Cross Sections for CO2 Energy (eV) Qi (10-24 m2) Energy (eV) Qi (10-24 m2)

33 00 67 290

34 0176 68 387

35 0616 69 528

36 141 70 686

37 273 71 898

38 528 72 1144

39 818 73 1452

40 1065 74 1778

41 1276 75 2165

42 1408 76 2666

43 1478 77 3124

44 1364 78 3573

45 1206 79 3960

46 977 80 4242

47 774 81 4286

48 598 82 4136

49 440 83 3802

50 282 84 3362

51 194 85 2834

52 132 86 2147

53 097 87 1725

54 0616 88 1364

55 0264 89 1021

56 0176 90 783

57 0088 91 616

58 0000 92 484

59 0088 93 370

60 0176 94 290

61 0264 95 229

62 0440 96 176

63 0616 97 132

64 106 98 106

65 141 99 0792

66 202 100 0616

Note: See Figure 2713 for graphical presentation

TABLE 27.14 Drift Velocity of Electrons

E/N (Td) W (103 m/s) E/N (Td) W (103 m/s)

03 0536 80 1244

04 0714 90 1338

05 089 100 1426

06 1068 150 1787

07 1246 200 2193

08 1424 250 2660

100 1781 300 2941

200 356 350 3057

300 537 400 3345

400 72 450 3734

500 912 500 4103

600 1112 600 4501

700 1324 700 4904

800 1551 800 5462

1000 206 900 5720

1200 268 1000 6630

1400 346 2000 1411

1700 487 3000 1793

2000 632 4000 2125

60 1159 5000 2425

70 1245

Source:Adapted from Raju, GG, Gaseous Electronics: Theory and Practice, Taylor & Francis, London, 2005

Note:See Figure 2714 for graphical presentationFigure 2715 shows the influence of gas pressure on drift velocity

Figure 2717 shows the longitudinal diffusion coefficient (DL) as a ratio of mobility (DL/µ) and density-normalized product (NDL)

Characteristic Energy (Dr/µ) E/N (Td) Dr/µ (V) E/N (Td) Dr/µ (V)

007 0024 30 111

010 0024 40 150

03 0024 50 175

050 0025 70 223

080 0028 100 282

10 0029 200 534

20 0032 300 484

30 0027 400 558

40 0026 500 611

50 0030 700 688

70 0039 1000 811

100 0053 1500 1050

20 047

Source:Adapted from Raju, GG, Gaseous Electronics: Theory and Practice, Taylor & Francis, London, 2005

Note:See Figure 2716 for graphical presentation

10-1 100 101 102 103 104 E/N (Td)

W (CO2)

10-1

W (1

03 m

/s )

0 0.29 0.65 E/N (Td)

0.88 1.17

CO2

El ec

tio n

dr ift

ve lo

cit y(

10 3 m

/s )

1 0.1

100 1000

1 100 10 1000

NDL

DL/μ

N D L

[1 02

2 / (m

s)]

D L /μ

(V )

E/N (Td)

10-2 10-1 100 101 102 103 104

E/N (Td)

Dr/μ (CO2)

D r /μ

(V )

10-1

10-2

10-3

See Table 2716

Density-reduced attachment coefficients are shown in Figure 2719 Table 2717 shows the gas number density dependence of attachment coefficients for three-body process

the expression

α N

F G E

= −  

 exp

N

(276)

are F = 297 × 10−20 m2 and G = 616 Td for the range 80 ≤ E/N ≤ 1700TdSchlumbohm (1965) obtains F = 148 × 10−20 m2 and G = 568 Td−1 for the range 225 ≤ E/N ≤ 450 Td

0 75 100

E/N (Td) 125 150

η/ N

(1 0-

2 ) Bhalla et al. Alger et al. Davies et al.