ABSTRACT

Transport coefficients 01-1000 Yousfi and Benabdessadok (1996)

Differential scattering 2-30 Alle et al. (1992) Vibrational excitation 5, 75, 15 Gulley et al. (1992) Ionization cross section 15-1000 Rao and Srivastava (1992) Ionization cross section 10-270 Syage (1992) Total scattering cross section

75-4000 Zecca et al. (1992)

Total scattering cross section

1-100 Szmytkowski et al. (1989)

Total scattering cross section

1-400 Sueoka et al. (1987)

Drift velocity (1-10) Christophorou et al. (1982) Ionization coefficients (30-3000) Risbud and Naidu (1979) Attachment coefficients (60-120) Risbud and Naidu (1979) Attachment coefficients (45-90) Parr and Moruzzi (1972) Attachment cross section 4-135 Sharp and Dowell (1969) Drift velocity (001-20) Pack et al. (1962) Attachment coefficients (45-60) Bradbury (1934) Attachment coefficients (45-90) Bailey and Duncanson

(1930)

Note:Bold font indicates experimental study

Figure 391 The highlights are

1 A trend of increasing cross section toward lower energy below 1 eV

2 A shallow Ramsauer-Townsend minimum at ~25 eV 3 A broad shape resonance at ~10 eV attributed to the

temporary attachment of electron 4 For energy >10 eV, the cross section decreases

approximately according to ε−1/2

Figure 392 shows the differential scattering cross sections for NH3 (Boesten et al, 1996) The highlights are

1 A steep decline in differential cross section as the angle increases, signifying forward scatteringThis behavior is attributed to the dipole moment of the molecule, though molecules having a smaller dipole moment, such as (N2O, 0167 D), also demonstrate the same behavior

2 The forward scattering is observed at all energies in the range 2-30 eV

TABLE 39.3 Total Scattering Cross Sections for NH3 Energy (eV)

QT (10-20 m2)

Energy (eV)

QT (10-20 m2)

Energy (eV)

QT (10-20 m2)

Itikawa (2003) Zecca et al. (1992) Sueoka et al. (1987)

10 145 75 100 10 147

12 133 80 963 12 134

15 120 90 907 14 124

17 114 100 854 16 116

20 108 110 787 18 111

25 105 125 737 20 109

30 107 150 686 22 104

35 114 175 618 25 101

40 126 200 564 28 108

45 140 225 511 31 112

50 156 250 481 34 113

60 180 300 425 37 113

70 203 350 386 40 120

80 219 400 347 45 134

90 228 450 315 50 145

10 229 500 294 55 152

12 218 600 251 60 155

15 201 700 220 65 157

17 191 800 199 70 169

20 178 900 178 75 175

25 161 1000 161 80 171

30 148 1100 147 85 171

35 138 1250 131 90 175

40 130 1500 110 95 175

45 123 1750 0939 100 175

50 118 2000 0854 110 175

60 109 2250 0757 120 169

70 103 2500 068 130 169

80 968 2750 0622 140 164

90 910 3000 0554 150 160

100 857 3250 0505 160 155

120 764 3500 0466 170 150

150 667 4000 0413 180 149

170 617 190 145

200 555 200 142

250 476 220 140

300 4421 250 129

350 375 300 121

400 338 350 110

Cross Sections for NH3 Energy (eV)

QT (10-20 m2)

Energy (eV)

QT (10-20 m2)

Energy (eV)

QT (10-20 m2)

Itikawa (2003) Zecca et al. (1992) Sueoka et al. (1987)

450 313 400 105

500 288 500 93

600 250 600 88

700 221 700 83

800 199 800 79

900 181 900 73

1000 166 100 70

120 63

150 56

200 50

250 42

300 39

350 35

400 32

Source: Adapted from ItikawaY, (Ed), Interactions of Photons and Electrons with Molecules, Vol 17c, Landolt-Börnstein, Springer, 2003

Pack et al (1962) have derived the momentum transfer cross section at very low energies (01 ≤ ε ≤ 10 eV) according to

1 4 93 10 1 51 1017 1 2 19 3 2 2

QM = × + × −. ./ /ε ε m

(391)

Table 394 shows the integral elastic and momentum transfer cross sections for NH3 (Alle et al, 1992) Figure 393 shows the cross sections (Boesten et al, 1996)

A single value of vibrational excitation cross section for (ν1 + ν3) mode of 067 × 10−20 m2 at 75 eV has been reported by Gulley et al (1992)

Table 395 shows the ion appearance potentials for NH3 (Mann et al, 1940)

3.92 Cross section

Ammonia (NH3)

Ang le(°)En

erg y(e

V)

120°eV 2

15 30

TABLE 39.4 Integral Elastic and Momentum Transfer Cross Sections

Energy (eV) Qel (10-20 m2) QM (10-20 m2)

2 1122 224

5 1583 875

75 1621 915

15 1616 1006

20 1443 640

30 1097 573

2 1 10

Alle QM

(QT) Qel

Alle NH3

Sueoka

theory

Electron energy (eV) 100

TABLE 39.5 Ion Appearance Potentials

Ion Energy (eV) Probable Process Description

NH3 + 105 NH3 + e → NH3+ Ionization

NH2 + 157 NH3 + e → NH2+ + H Dissociative ionization

NH+ 194 NH3 + e → NH+ + H2 Dissociative ionization 237 NH3 + e → NH+ + 2H Dissociative ionization

N+ 249 NH3 + e → N+ + 3H Dissociative ionization 280 NH3 + e → N+* + 3H Dissociative ionization

H+ 233 NH3 + e → NH + H + H+ Dissociative ionization 269 NH3 + e → N* + 2H + H+ Dissociative ionization

H2 + 155 H2 → H2+ Dissociative ionization

NH3 + e → NH + H2+ Dissociative ionization NH32+ 42 NH3 + e → NH32+ Double ionization H− 376 NH3 + e →NH2 + H− Dissociative

attachmenta

503 NH3 + e →NH2* + H− Dissociative attachmenta

58 NH3 + e → N + H2+H− Dissociative attachment

230 NH3 + e → NH+ + H + H− Ion pair production NH2

− 330 NH3 + e → H + NH2− Dissociative attachmenta

578 NH3 + e → H + NH2 −* Dissociative

attachmenta

60 NH3 + e → H + NH2− Dissociative attachment

1350 NH3 + e → H* + NH2− Dissociative attachmenta

aData are from Sharp and Dowell (1969)

Table 396 and Figures 394 and 395 show the ionization cross sections for NH3 Figure 394 shows the partial ionization cross sections from Rejoub et al (2001)

Attachment cross sections measured by Sharp and Dowell (1969) have been renormalized by Itikawa (2003) as shown in Table 397 and Figure 396

Total Ionization Cross SNH3

Qi (10-20 m2)

Energy (eV) Rejoub et al.