ABSTRACT

This chapter is devoted to the study of the reliable H∞ control for linear systems against actuator faults. Here, a general actuator fault model is considered, which covers the outage cases and the loss of effectiveness cases. It is well known that the fault-tolerant control problem has been paid more attention in recent years [74, 105, 145, 161, 136], since unsatisfactory performances or even instability may happen in the event of actuator faults [114, 126, 128, 133, 151, 164]. Reliable control is a kind of passive control approach, where the same controller with fixed gain is used throughout normal and fault cases such that this type of controller is easily implemented and the performance index can be described. However, as the number of possible failures and the degree of system redundancy increase, the traditional reliable controller with fixed gain becomes more conservative and attainable control performance indexes may not necessarily be satisfactory.