ABSTRACT

This chapter will introduce another application of the synchronization control approach to parallel robotic manipulators. Due to advantages of high stiffness, high accuracy, and high load-carrying capacity, parallel robotic manipulators have been widely used in various industrial applications. But their relative complex mechanisms make the precise control of parallel manipulators more difficult. It will be shown in this chapter that the cross-coupled synchronization control approach can be readily applied to high-precision tracking control of parallel manipulators. Based on the established synchronization goal, the position synchronization error is defined by considering motion synchronization between each actuator joint and its adjacent joints of the parallel manipulators. A decentralized trajectory tracking controller is then developed with feedback of both position and synchronization errors, formed with a combination of feedforward, feedback, and a saturation control. It is proven that this tracking controller can asymptotically converge both position and synchronization errors to zero. The proposed controller does not require the explicit use of the system dynamic model. Experimental results will demonstrate improved performance with the proposed synchronous control design.