ABSTRACT

In today’s power electronics, the active switches can withstand high switching frequencies. This means that the major part of the magnetic component of power electronics is subjected to eddy current losses. In this chapter we propose a fast design method that includes eddy current losses-neglecting eddy currents may result in significant errors. The word fast means that a decision tree is given to guide the designer and that no time-consuming mathematical tools are used. The fast design uses methods that do not achieve the highest accuracy, e.g., the proposed thermal approach. However, the provided accuracy is sufficient for most power electronics applications. Moreover, the same design flowchart can also be used with more precise methods (e.g., a more accurate thermal model or a transverse field computation by finite elements).