ABSTRACT

I. Roles of Wet Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II. Improvement of RCA Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A. Current Status of Wet Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B. Improvement of RCA Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1. Surface Microroughness Caused by Wet Process . . . . . . . . . . . . . . . . . . . 65

2. Removal Efficiency of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3. Effect of Surface Microroughness on Electrical

Characteristics of Thin Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III. Effect of Megasonic Irradiation in UPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B. MS-Induced Chemical Reactions in UPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C. MS-Induced Radical Formation in UPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

IV. Specific Gas Dissolved Functional Water

and its Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A. Definition of Functional Water for Wet Cleaning Process . . . . . . . . . . . . . . . . 74

B. Idea of H2-UPW Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1. Effects of Dissolved Gas in MS Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 75

2. Particle Removal by Means of Electrolytic Cathode Water . . . . . . . . . . . 75

3. Idea of Gas-Dissolving-Type H2-UPW . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C. Adoption of Module with Built-in Gas Permeating Membrane . . . . . . . . . . . . 76

D. Control of Dissolved Gases (Application of Henry’s Law) . . . . . . . . . . . . . . . 76

E. Deaeration Using Water Vapor Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

V. O2-Free Wafer-Cleaning Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B. Microroughness of Silicon Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C. Hydrogen Termination of Silicon Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

VI. Total Room-Temperature Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A. Total Room-Temperature 4-Step Cleaning Process . . . . . . . . . . . . . . . . . . . . . 86

1. O3-UPW for Wet Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

a. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

b. Cleaning Efficiency of O3-UPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

i. Removal of Organic Impurities . . . . . . . . . . . . . . . . . . . . . . . . 87

ii. Removal of Metallic Contaminants . . . . . . . . . . . . . . . . . . . . . 88

2. H2-UPW for Wet Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

a. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

b. Relation between Dissolved Hydrogen Concentration and

Particle Removal Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

c. Removal of Alumina Particle and Silica Particle . . . . . . . . . . . . . . . 91

d. Comparison between APM Cleaning and H2-UPW Cleaning . . . . . 91

e. Effects of H2-UPW Cleaning on Wafer

Surface Microroughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

f. Cleaning by UPW with Other Gases than

Hydrogen Gas Dissolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

g. Particle Removal Mechanism of H2-UPW Cleaning . . . . . . . . . . . 95

i. Effects of NH3 Spike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ii. Effects of MS Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iii. Effects of Dissolved Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . 97

iv. Model of Correlation between Dissolved Hydrogen

and MS Irradiation (Surplus Radical Model) . . . . . . . . . . . . . 97

v. Verification of Surplus Radical Model . . . . . . . . . . . . . . . . . . 99

h. Applications of H2-UPW Other than Particle Removal . . . . . . . . . . 100

i. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3. Total Room-Temperature 4-Step Cleaning Process . . . . . . . . . . . . . . . . . 101

4. Purity of Gas-Dissolved Functional Water . . . . . . . . . . . . . . . . . . . . . . . 101

B. Total Room-Temperature 5-Step Cleaning Process . . . . . . . . . . . . . . . . . . . . 102

1. Design of 5-Step Cleaning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2. Cleaning by HFþO3-UPW (FOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3. Prevention of Decomposition of Surfactant . . . . . . . . . . . . . . . . . . . . . . . 106

C. Strategy in Cleaning Process in BEOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

VII. Surfactant and Chelating Agent Technologies for

Innovating Semiconductor Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A. Challenges in Cleaning Technology to Address

Higher-Density ULSI Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B. Solutions to the Challenges from the Viewpoint of

Cleaning Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C. Preventing Metal Cross Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D. Accelerating Fine Particle Removal without Device Pattern Damage . . . . . . 112

E. Single-Wafer Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

F. Cleaning of New Material Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

1. Challenges of New Material Surface Cleaning . . . . . . . . . . . . . . . . . . . . . 115

2. Preventing both Material Corrosion and Contaminant Redeposition . . . . 116

3. Use of Surfactant as Corrosion Inhibiter . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4. Improvement of Wettability of Hydrophobic Surface . . . . . . . . . . . . . . . . 118

G. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

VIII. FTIR-ATR Calibration Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A. FTIR-ATR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B. Preparation of Reference Block with Organic Film Adsorbed to

Obtain Calibration Curve for Quantification of Organic Compound

Adsorption onto Si Surface: Langmuir-Blodgett Technique . . . . . . . . . . . . . . 119

C. Preparation of Calibration Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D. Adsorption of Organic Compound to Si Surface in Cleanroom Ambience . . . 123

E. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

IX. Balanced Push Pull Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B. Ultrasonic Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

1. Necessity of Ultrasonic Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2. Fine Particle Elimination Mechanism of Ultrasonic Cleaning . . . . . . . . . 127

a. Elimination Principle of Adhesive Particles from Substrates . . . . . . 127

b. Possibility of Occurrence of Megasonic and Cavitation . . . . . . . . . 127

c. Noise Generation Research at the Time of

Megasonic Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

d. Estimation of Elimination Mechanism of Adhesive

Particles from Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C. BPP Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

1. Concept of BPP Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2. Ultrasonic Oscillator Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

a. Oscillator Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

b. Oscillator Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

c. Enclosure Materials and Surface Processing . . . . . . . . . . . . . . . . . . . 135

d. Board Thickness of Enclosures (Ultrasonic Radiant Boards) . . . . . 136

e. Oscillator and Enclosure (Radiant Board) Bonding . . . . . . . . . . . . . 136

f. Enclosure (Radiant Board) Structure . . . . . . . . . . . . . . . . . . . . . . . . . 136

3. Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4. Cleaning Fluid Supply/Discharge Section (Rectification Mechanism) . . 137 a. Optimization of the Cleaning Fluid Supply/Discharge Section . . . . 139 b. Fluid Flow Calculation Method for the Current Plate

of the Drilling Tubule Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

i. Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ii. Calculation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

c. Fluid Flow Calculation Method for the Current Plate

Made by Porous Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

i. Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ii. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

iii. Calculation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

d. Validation of Calculation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

e. Structure of the Cleaning Fluid Supply/Discharge Section of the BPP Nozzle for Cleaning of 720 mm Substrate . . . . . . . . . . . 142

5. Optimum BPP Nozzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D. Cleaning Capacity of BPP Nozzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

1. Cleaning Power Evaluation using 6-in. Glass

Substrates and Silicon Wafers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2. Cleaning Evaluation using the 550 mm 650 mm Glass Substrate . . . . 145 3. Cause of Performance Differences with Traditional

Ultrasonic Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

a. Comparison of Acoustic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

b. Comparison of Ultrasonic Applied Areas . . . . . . . . . . . . . . . . . . . . 147

4. Ideal Situation of Ultrasonic Cleaning Equipment . . . . . . . . . . . . . . . . . . 148

E. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

In order to improve the quality and yield in semiconductor manufacturing process, it is essential to

realize “ultraclean Si wafer surface” on which ultra-fine patterns are fabricated. The ultraclean Si

wafer surface is defined as a surface which satisfies the following eight requirements [1]:

1. Free from particles

2. Free from metallic impurities

3. Free from organic impurities

4. Free from unintended native oxide

5. Maintain atomic-order “microroughness”

6. With top surface completely terminated with hydrogen

7. Free from moisture adsorption

8. Free from charge-up

Si wafer goes through wet cleaning process before and after each cycle composed of film depo-

sition, photolithography, and etching steps. The number of cleaning steps is about twice as many as

the number of masks used in semiconductor manufacturing process. In addition, chemical mechan-

ical polishing (CMP) process which has been rapidly adopted to planarize wafer surface requires

cleaning step right after its completion. Needs for cleaning step keep increasing.