ABSTRACT

Equation for q00 D k @T @z

h kg

i diffusive flux D ˛ @.cpT /

Diffusivity ˛ m2=s

DAB

m2=s

Equation for total flux q00 D k @T @z„ƒ‚…

C cpT u„ ƒ‚ … convective

nA;z D DAB @cA

@z„ ƒ‚ … diffusive

C cAu„ƒ‚… convective

Convective transfer h W=m2 K D q00

coefficient

Overall

Heat Transfer Mass Transfer

Governing Equation @T @t C u@T

C rA

Q is the rate of heat rA is the rate of mass generation or generation or

absorption per disappearance per

unit volume unit volume

Boundary Conditions

T ˇˇˇ surface

= Ts cA

ˇˇˇ surface

= cA;s

surface temperature surface concentration

is specified, e.g., is specified, e.g.,

condensing steam later stages of drying

ˇˇˇ surface

D nA;s surface heat flux surface mass flux

is specified, e.g., is specified, e.g.,

ˇˇˇ surface

= h.T ˇˇˇ surface

T1/ D hm.cA ˇˇˇ surface

cA;1 / convection over surface convection over surface

Only one of these conditions at a surface

Quantity Symbol Value

Universal Gas Constant Rg 8:205 102 m3 atm/kmolK 8:314 102 m3 bar/kmolK 8.314 kJ/kmolK

Avogadro’s Number N 6:024 1023 molecules/mol Planck’s Constant h 6:625 1034 J s/molecule Boltzmann’s Constant 1:380 1023 J/Kmolecule Speed of Light in Vacuum co 2:998 108 m/s Stefan-Boltzmann Constant 5:670 108 W/m2 K4 Gravitational Acceleration (Sea Level) g 9.807 m/s2

Normal Atmospheric Pressure p 101,325 N/m2

To Convert From to Multiply by

Area

acre m2 4.046 856 103 acre ft2 4.356 000 104 ft2 m2 9.290 304 102 m2 ft2 1.076 391 101 cm2 m2 1.000 000 104 ft2 in.2 1.440 000 102 in.2 m2 6.451 600 104

Energy

Btu (international) kJ 1.055 056 Btu kcal 2.519 958 101 kcal kJ 4.186 800

kW h kJ 3.600 000 103 kW h Btu 3.413 103 hp h Btu 2.454 103 J ergs 1.000 000 107 eV J 1.602 19 1019 Btu ft-lbf 7.781 693 102 ft lbf kJ 1.355 818 103

Force

lbf N 4.448 222

dyne N 1.000 000 105

Length

angstrom m 1.000 000 1010 caliber m 2.540 000 104 fathom m 1.828 800

ft m 3.048 000 101 inch m 2.540 000 102 mile m 1.609 344 103 mile ft 5.280 103 yard m 9.144 000 101

Mass

carat kg 2.000 000 104 grain kg 6.479 891 105 lbm (pound mass) kg 4.535 924 101 kg lbm 2.204 622

kg slug 6.852 1 102 slug lbm 3.217 405 101 ton lbm 2.000 103 ton kg 9.071 847 102

Mass per Unit Volume (density)

lbm/ft 3 kg/m3 1.601 846 101

lbm/in. 3 kg/m3 2.767 990 104

lbm/gal kg/m 3 1.198 264 102

Power

Btu/h W (watt) 2.930 711 101 J/s W 1.000 000 erg/s W 1.000 000 107 ft lbf/s W 1.355 818 hp W 7.456 999 102 hp ft lbf/s 5.50 102 hp ft lbf/min 3.300 0 104 hp (boiler) Btu/h 3.347 14 104 hp (boiler) kW 9.809 50

Pressure

std atm kPa 1.013 25 102 std atm lbf/in.2 1.469 6 101 cm Hg (0ıC) kPa 1.333 22 in. Hg (32ıF) kPa 3.386 389 in. H2O (60

ıF) kPa 2.488 4 101 bar kPa 1.000 000 102 bar lbf/in.2 1.450 377 101 lbf/in.2 kPa 6.894 757

in. Hg (32ıF) lbf/in.2 4.911 542 101 ft H2O (60

ıF) lbf/in.2 4.330 943 101 ft H2O (60

ıF) kPa 2.986 08 dyne/cm2 kPa 1.000 000 104

Specific Heat

Btu/lbm ıF kJ/kg K 4.186 800 cal/g ıC Btu/lbm ıF 1.000 000

Thermal Conductivity

Btu/ft h ıF W/m K 1.730 6 279 101 cal/cm h ıC Btu/ft h ıF 6.719 69 102

Thermal Conductance

Btu/ft2 h ıF W/m2 K 5.674 466

Temperature ıC K TK = TıC + 273.15 ıF ıR TıR = TıF + 459.67 K ıR TıR = TK 1.8 ıC ıF TıF = (TıC + 273.15) 1.8 - 459.67 ıF ıC TıC = (TıF + 459.67)/1.8 - 273.15

Velocity

ft/s m/s 3.048 888 101 miles/h km/h 1.609 344

knot m/s 5.144 444 101

Viscosity

centipoise Pa s 1.000 000 103 lbm/ft s Pa s 1.488 164 lbf s/ft2 Pa s 4.788 026 101

Volume

acre ft m3 1.233 483 103 barrel (42 gal) m3 1.589 873 101 ft3 m3 2.831 685 102 in.3 m3 1.638 706 105 ft3 gallons 7.480 52

liter m3 1.000 000 103 gallons liter 3.785 412

gallons m3 3.785 412 103 gallons ft3 1.336 81 101 quart (U.S. liquid) m3 9.463 529 104 pint (U.S. liquid) liter 4.731 765 101

erf() erf() erf()

0.000 0.0000 0.850 0.7707 1.700 0.9838

0.025 0.0282 0.875 0.7841 1.725 0.9853 0.050 0.0564 0.900 0.7969 1.750 0.9867

0.075 0.0845 0.925 0.8092 1.775 0.9879

0.100 0.1125 0.950 0.8209 1.800 0.9891

0.125 0.1403 0.975 0.8321 1.825 0.9901

0.150 0.1680 1.000 0.8427 1.850 0.9911 0.175 0.1955 1.025 0.8528 1.875 0.9920

0.200 0.2227 1.050 0.8624 1.900 0.9928

0.225 0.2497 1.075 0.8716 1.925 0.9935

0.250 0.2763 1.100 0.8802 1.950 0.9942

0.275 0.3027 1.125 0.8884 1.975 0.9948

0.300 0.3286 1.150 0.8961 2.000 0.9953 0.325 0.3542 1.175 0.9034 2.025 0.9958

0.350 0.3794 1.200 0.9103 2.050 0.9963

0.375 0.4041 1.225 0.9168 2.075 0.9967

0.400 0.4284 1.250 0.9229 2.100 0.9970

0.425 0.4522 1.275 0.9286 2.125 0.9973 0.450 0.4755 1.300 0.9340 2.150 0.9976

0.475 0.4983 1.325 0.9390 2.175 0.9979

0.500 0.5205 1.350 0.9438 2.200 0.9981

0.525 0.5422 1.375 0.9482 2.225 0.9983

0.550 0.5633 1.400 0.9523 2.250 0.9985 0.575 0.5839 1.425 0.9561 2.275 0.9987

0.600 0.6039 1.450 0.9597 2.300 0.9989

0.625 0.6232 1.475 0.9630 2.325 0.9990

0.650 0.6420 1.500 0.9661 2.350 0.9991

0.675 0.6602 1.525 0.9690 2.375 0.9992

0.700 0.6778 1.550 0.9716 2.400 0.9993 0.725 0.6948 1.575 0.9741 2.425 0.9994

0.750 0.7112 1.600 0.9763 2.450 0.9995

0.775 0.7269 1.625 0.9784 2.475 0.9995

0.800 0.7421 1.650 0.9804

0.825 0.7567 1.675 0.9822

Note: erf./ D erf./ and erfc./ D 1 erf./

Figure B.1: Unsteady-state diffusion in a large slab. Before using in mass transfer for

m ¤ 0, refer to discussion in Section 13.2.5 on page 452. From Principles of Unit Operations by A. S. Foust et al., c 1960 by John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.