ABSTRACT

First prove that fµν(−ω) = fνµ(ω). To see this consider φµν(t) =∫ β 0 dλ〈Jν(−i~λ)Jµ(t)〉 or

φµν(−t) = ∫ β 0

dλ〈Jν(−i~λ)Jµ(−t)〉 = ∫ β 0

dλtr(Jµ(−t)e−βHJν(−i~λ))

=

dλtr(e−iHt/~Jµ(0)e−βH+λHJν(0)e−λH), (8.1)

where the cyclic property of the trace operation is used, further, the inte-

grand can be written as tr(e−βHe(β−λ)HJµ(0)e−(β−λ)HeiHt/~Jν(0)e−iHt/~)

or 〈Jµ(−i~(β − λ))Jν(t)〉. Thus,

φµν (−t) = ∫ β 0

dλ〈Jµ(−i~(β − λ))Jν(t)〉. (8.2)

Shift the integration variable from λ to λ′ = β − λ

φµν(−t) = ∫ β 0

dλ′〈Jµ(−i~λ)Jν(t)〉 = φνµ(t). (8.3)

Now, in the definition of the Fourier transform of the response function (Equa-

tion (3.53)) change ω to −ω and then shift the integration variable from t to

−t

fµν(−ω) = ∫ +∞ −∞

dtφµν(−t)eiωt = ∫ +∞ −∞

dtφνµ(t)e iωt = fνµ(ω). QED.