ABSTRACT

CONTENTS 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 23.2 Power Control in Single MNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

23.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 23.2.2 Problem Reformulation and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 23.2.3 Iterative Power Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 23.2.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

23.3 Power Control in Multiple MNOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 23.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 23.3.2 Weighted Rate Update Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 23.3.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

23.4 Joint Power Control and Admission Control for Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 566 23.4.1 Energy-Infeasibility Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 23.4.2 Sum-of-Infeasibilities Based Convex Relaxation Heuristic . . . . . . . . . . . . . . . . . 569 23.4.3 Price-Driven Spectrum Access Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . 570 23.4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

23.5 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Energy efficiency is particularly important in next-generation wireless mobile networks that can support a large number of battery-powered mobile terminals. An upcoming trend in mobile net-

work operation has been the decoupling of wireless carrier infrastructure from mobile services that enables the multiplexing of services offered by different mobile network operators (MNOs), e.g., Google’s Project Fi. This wireless access by multiple heterogeneous MNOs presents new challenges to wireless resource sharing and interference management. In this chapter, we study the design of energy-efficient power control in a network with multiple MNOs. We provide a new and novel perspective to the design of single-MNO iterative power control algorithm that also provides the basis to design fast-convergent iterative power control algorithms for the more complex multiple-MNOs case. We also discuss a joint energy-efficient power control and admission control using the perspective of optimization-theoretic feasibility. Lastly, we provide numerical simulation to demonstrate the energy efficiency gain and the performance of the algorithms.