ABSTRACT

Problem 4. The parametric equations of a cycloid are x=4(θ− sinθ), y=4(1− cosθ). Determine (a) dy

dx (b) d

(a) x=4(θ− sinθ),

hence dx dθ =4−4cosθ=4(1− cosθ)

y=4(1− cosθ), hence dy dθ =4sin θ

From equation (1),

dy dx

= dy dθ dx dθ

= 4sin θ 4(1− cosθ) =

sinθ (1− cosθ)

(b) From equation (2),

d2y dx2

= d

( dy dx

)

dx dθ

= d

( sinθ

1− cosθ )

4(1− cosθ)

= (1− cosθ)(cosθ)− (sinθ)(sinθ)

(1− cosθ)2 4(1− cosθ)

= cosθ − cos 2 θ − sin2 θ

4(1− cosθ)3

= cosθ − ( cos2 θ + sin2 θ)

4(1− cosθ)3

= cosθ−1 4(1− cosθ)3

= −(1− cosθ) 4(1− cosθ)3 =

−1 4(1− cosθ)2

Now try the following Practice Exercise

Practice Exercise 140 Differentiation of parametric equations (Answers on page 851)

1. Given x=3t−1 and y= t (t−1), determine dy dx

in terms of t

2. A parabola has parametric equations: x= t2, y=2t . Evaluate dy

dx when t=0.5

3. The parametric equations for an ellipse are x=4cosθ , y= sinθ . Determine (a) dy

dx (b) d

4. Evaluate dy dx

at θ= π 6

radians for the hyperbola whose parametric equations are x=3secθ , y=6tanθ

5. The parametric equations for a rectangular hyperbola are x=2t , y= 2

t . Evaluate

dy dx

when t=0.40

The equation of a tangent drawn to a curve at point (x1, y1) is given by:

y− y1= dy1dx1 (x− x1)

Use this in Problems 6 and 7.