ABSTRACT

The dominance of the Copenhagen interpretation is the result of a historical accident (Cushing, 1994). At the Solvay conference in 1927, Louis de Broglie put forward the deterministic pilot wave theory, described later. Never slow to criticize, Pauli jumped up and demolished de Broglie’s proposal, and de Broglie was so discouraged by this that he did not develop his interpretation any further. The Copenhagen interpretation was then developed by Bohr, Heisenberg, Pauli and many others, as described in the previous chapter. It was strongly supported by von Neumann’s proof of the impossibility of hidden variables. Years later, in 1952, Bohm published a deterministic hidden variable theory, showing that there must be something wrong with von Neumann’s proof. The error was found by John Bell in 1966, as described in the last chapter, and he also showed how Pauli’s objections to de Broglie’s original idea can be answered. If this had been done at the conference in 1927, quantum mechanics could have been interpreted deterministically from the beginning. The essential mistake in the Copenhagen interpretation is to treat it as a

complete account of the behaviour of each individual system. It is frequently claimed that it enables us to calculate, at least in principle, everything that can be measured. Thus Hooft (1997, p. 11) said that ‘The laws of quantum mechanics have been formulated very accurately. We know exactly how to compute anything we would like to know.’ Also Peierls (1997, p. 25) has said that quantum mechanics ‘had become a complete and consistent scheme capable of giving a unique answer to any questions relating to actual or possible observations’. Even if this were true, it would not imply that it is the final complete theory, for it is always possible that some new phenomenon might be found that cannot be calculated quantum-mechanically. However, it is not true: there are many phenomena such as the time of decay of a radioactive nucleus, or the direction a particle is scattered by a nucleus, that cannot be calculated, even in principle. Quantum mechanics is therefore an incomplete theory. We can only calculate the statistical properties of these systems, such as the half-life of a radioactive decay or the differential scattering cross-section that gives the probabilities that a particle is scattered through various angles. All measurements of quantum systems are of this statistical character. It might be thought that the possibility of making measurements on a single electron provides an exception to this. However, even in such cases the electron is continually bathed in a fluctuating background radiation from nearby atoms. Since this is variable, that electron is a member of an ensemble of electrons subject to different fluctuations. All these examples clearly demonstrate the

statistical character of quantum mechanics. ‘I am rather firmly convinced’, Einstein (in Schilpp, 1949, pp. 666, 671) remarked, ‘that the essentially statistical character of contemporary quantum theory is solely to be ascribed to fact that this theory operates with an incomplete description of physical systems’. As a result, ‘the c-function is to be understood as the description not of a single system but of an ensemble of systems’. So, ‘if the statistical quantum theory does not pretend to describe the individual system completely, it appears unavoidable to look elsewhere for a complete description of the individual systems’. Thus ‘the difficulties of theoretical interpretation disappear, if one views the quantum-mechanical description as a description of an ensemble of systems’. If this is achieved, ‘the statistical theory would, within the framework of future physics, take an approximately analogous position to statistical mechanics within the framework of classical mechanics’. ‘Thus, essentially, nothing has changed since Galileo or Newton or Faraday concerning the status of the ‘‘observer’’ or our ‘‘consciousness’’ or of our ‘‘information’’ in physics’ (Popper, 1982, p. 46). Once this is accepted, the quantum paradoxes that plagued the Copenhagen interpretation are easily resolved, as described below. In any textbook of quantum mechanics problems such as the calculation of

the energy levels of the hydrogen atom are solved as if that hydrogen atom is alone in the universe. As Feynman (1972) remarked, ‘when we solve a quantum-mechanical problem, what we really do is to divide the universe into two parts – the system in which we are interested and the rest of the universe. We then usually act as if the system in which we are interested comprised the whole universe.’ In fact, however, every hydrogen atom on which measurements are made is surrounded by other atoms and exposed to their radiations. Quantum mechanics somehow takes this into account and gives the average behaviour of an ensemble of hydrogen atoms. A more detailed theory takes these influences into account. One attempt to do this is stochastic electrodynamics, described in a later section.