ABSTRACT

Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . 82

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Preparation and Characterization of Particles . . . 82

Microemulsion Characterization . . . . . . . . . . . . . 82

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Particle Characteristics . . . . . . . . . . . . . . . . . . . . . 82

Microemulsion Characterization . . . . . . . . . . . . . 83

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

TEOS-Microemulsion System . . . . . . . . . . . . . . 85

Amphiphilic Nature of Hydrolyzed TEOS . . . . 85

Locale of Evolving Solid Particles . . . . . . . . . . 85

Distribution of Surfactant Molecules . . . . . . . . 85

Model of Particle Formation . . . . . . . . . . . . . . . . . 85

Particle Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Assessment of Particle Formation Mechanisms . . 87

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

The synthesis of nanometer-sized silica particles by the base-catalyzed, controlled hydrolysis of tetraethoxy-

silane (TEOS) in a nonionic reverse micellar system is described. Spectrofluorometric techniques were used

to characterize the reverse micellar solutions. Particle characterization was conducted by transmission

electron microscopy. The effect of the water-to-surfactant molar ratio (R) on particle size and size distri-

bution was investigated over a wide range of R values (0.50 to 3.54). Stable dispersions of amorphous

silica with mean particle diameters in the range of 46 to 68 nm were produced. Small (46 nm) and extremely

monodisperse particles (polydispersity below 4%) were obtained at intermediate R values (1.4), whereas

both particle size and polydispersity increased at lower and higher R values. The effects of R on particle

size and size distribution are discussed in terms of water “reactivity” (i.e., proportion of bound to free

water), concentration of reverse surfactant aggregates, distribution of hydrolyzed TEOS molecules

among aggregates, and dynamics of intermicellar matter exchange. A mechanistic model for particle

nucleation and growth in these systems is proposed.