ABSTRACT

Colloidal Silica in Cement and Concrete . . . . . . . . 738

Cement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

What Is Cement and Concrete? . . . . . . . . . . . . 738

Hydration of Cement . . . . . . . . . . . . . . . . . . . . 738

Flaws in Cement . . . . . . . . . . . . . . . . . . . . . . . 740

Silica in Cement . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Silica Fume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Colloidal Silica . . . . . . . . . . . . . . . . . . . . . . . . . 741

Colloidal Silica as Retention Aid in

Paper Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

Paper-Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

Retention, Retention Mechanisms

and Retention Aids . . . . . . . . . . . . . . . . . . . . . . . 744

Dual Retention Aid Systems . . . . . . . . . . . . . . . . 745

Colloidal Silica in

Lead-Acid Batteries . . . . . . . . . . . . . . . . . . . . . . . . 747

Gelling of Silica Sols . . . . . . . . . . . . . . . . . . . . . . 747

Types of Gels . . . . . . . . . . . . . . . . . . . . . . . . . . 747

Common Features in Gel Formation . . . . . . . . 748

The Central Mechanism in Gel Formation . . . 748

The First Role of Hydroxyl

Ions — As a Catalyst . . . . . . . . . . . . . . . . . 748

The Second Role of Hydroxyl

Ions — Charge Repulsion . . . . . . . . . . . . . 748

The Role of Neutral Salts — Screening

of Charge Repulsion . . . . . . . . . . . . . . . . . 748

Specific Salt Effects — Effect of Cations . . 749

Effect of Anions . . . . . . . . . . . . . . . . . . . . . . . . 749

The Salt Effect Is Proportional to the pH . . . . 749

The Effect of Temperature . . . . . . . . . . . . . . . 749

Differences between the Polymerization

and Collision Mechanisms of Gel Formation 749

Kinetics of Collision Gels . . . . . . . . . . . . . . . . 749

Colloidal Silica in Coatings . . . . . . . . . . . . . . . . . . . 751

Shop Primers for Steel Substrates . . . . . . . . . . . . 751

Inorganic Paints . . . . . . . . . . . . . . . . . . . . . . . . . . 752

Hard, Scratch-Resistant Thin Coatings . . . . . . . . 752

Colloidal Silica in Polymer Latices . . . . . . . . . . 753

Colloidal Silica and Ink Jet . . . . . . . . . . . . . . . . . 753

Colloidal Silica as Polishing

Agent for Electronic Products . . . . . . . . . . . . . . . . 754

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

Dilute silica sols were prepared and studied over 70 years

ago. Their uses as binders in catalyst preparation, as glazes

on ceramics, as coatings on concrete and plaster of Paris,

as agents for treating paper and textiles, and several

other applications were investigated [1]. These early

silica sols contained less than 10% by weight of silica,

were fairly unstable and did not have reproducible proper-

ties. Iler [2] predicted that colloidal silica would not be

accepted for wide commercial use before these short-

comings were remedied.