ABSTRACT

Creating maps of entire chromosomes, which could then be used to reconstruct the chromosome’s DNA sequence, has been one of the fundamental problems in genetics right from its very inception [47]. These maps are central to the understanding of the structure of genes, their function, their transmission and their evolution. Chromosomal maps fall into two broad categories — genetic maps and physical maps. Genetic maps represent an ordering of genetic markers along a chromosome where the distance between two genetic markers is related to their recombination frequency. Genetic maps are typically of low resolution i.e., 1 to 10 million base pairs (Mb). Lander and Green [32] pioneered the use of computational techniques for the assembly of genetic maps with many markers. While genetic maps enable a scientist to narrow the search for genes to a particular chromosomal region, it is a physical map that ultimately allows the recovery and molecular manipulation of genes of interest.