ABSTRACT

The Laplace Transform (LT) is the cornerstone of classical circuits, systems, and control theory. Developed as a means of rendering cumbersome differential equation solution simple algebraic problems, the engineer has transcended this original motivation and has developed an extensive toolbag of analysis and design methods based on the “

s

-plane.” After a motivating differential equation (circuit) problem is presented, this chapter introduces the formal principles of the LT, including its properties and methods for forward and inverse computation. The transform is then applied to the analysis of circuits and systems, exploring such topics as the system function and stability analysis. Two appendices conclude the chapter, one of which relates the LT to other signal transforms to be covered in this volume.