ABSTRACT

A SENSOR ARRAY SYSTEM CONSISTS OF a number of spatially distributed elements, such asdipoles, hydrophones, geophones or microphones, followed by receivers and a processor. Thearray samples propagate wavefields in time and space. The receivers and the processor vary in mode of implementation and complexity according to the types of signals encountered, the desired operation, and the adaptability of the array. For example, the array may be narrowband or wideband and the processor may be for determining the directions of the sources of signals or for beamforming to reject interfering signals and to enhance the quality of the desired signal in a communication system. The broad range of applications and the multifaceted nature of technical challenges for modern array signal processing have provided a fertile ground for contributions by and collaborations among researchers and practitioners from many disciplines, particularly those from the signal processing, statistics, and numerical linear algebra communities.